Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:49:24.842Z Has data issue: false hasContentIssue false

Seismogenic faulting in an area of low seismic activity: Paleoseismicity of the El Camp fault (Northeast Spain)

Published online by Cambridge University Press:  01 April 2016

E. Masana
Affiliation:
Universitat de Barcelona, Dept. Geodinàmica i Geofísica, Zona Universitaria de Pedralbes, Barcelona 08028, Spain. E-mail: eula@natura.geo.ub.es, javill@geo.ub.es, santanac@natura.geo.ub.es
J.A. Villamarín
Affiliation:
Universitat de Barcelona, Dept. Geodinàmica i Geofísica, Zona Universitaria de Pedralbes, Barcelona 08028, Spain. E-mail: eula@natura.geo.ub.es, javill@geo.ub.es, santanac@natura.geo.ub.es
J. Sánchez Cabañero
Affiliation:
Consejo de Seguridad Nuclear, Justo Dorado, 11, Madrid 28040, Spain. E-mail: jsc@csn.es
J. Plaza
Affiliation:
ENRESA, Emilio Vargas, 7, Madrid 28043, Spain. E-mail: JPLH@enresa.es
P. Santanach
Affiliation:
Universitat de Barcelona, Dept. Geodinàmica i Geofísica, Zona Universitaria de Pedralbes, Barcelona 08028, Spain. E-mail: eula@natura.geo.ub.es, javill@geo.ub.es, santanac@natura.geo.ub.es

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given that earthquakes do not occur only along high slip-rate faults, slow moving seismogenic faults should be characterized in order to minimize seismic hazard uncertainties. Although no historical earthquakes related to the El Camp fault have been documented, earlier regional geological analysis and the presence of a fault scarp provide evidence of its activity. A paleoseismological study on the southern part of the fault was performed in accordance with the following steps: 1) geological and géomorphologie analysis focussing on the detection of evidence for the seismogenic behavior of the fault, 2) near fault analysis to select the best trenching sites, and 3) trenching to establish and characterize the paleoseismic events. Different dating procedures were used in regional and trenching analyses (Thermoluminiscence, U/Th, Radiocarbon, Pollen analysis). The seismogenic nature of the fault was established by the presence of liquefaction features related to the fault, and by the presence of colluvial wedges composed of large angular blocks. We identified a segment boundary to the north of the Porquerola creek and we focussed our attention on the southern segment, which was active after 125000 yr. The slip rate in this southern segment is 0.02 mm/yr. A minimum of three seismic events were detected, from young to old: the last event Z took place some time prior to 1195 yr AD, the penultimate event Y between event X and the Holocene, and, finally, event X occurred after 125000 yr and prior to 60000 yr. The recurrence period is between 25000 and 35000 yr, the elapsed time is estimated to be no longer than 3000 yr; and the maximum estimated earthquake considering both the onshore and the offshore part of the fault is Mw 6.7 +/-0,5.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Ahorner, L., 1996. How reliable are speculations about large paleo-earthquakes at the western border fault of the Roer Graben near Bree. Comptes Rendus des journées Luxemourgoises de géodynamique, 84: 3955.Google Scholar
Anadón, P., Cabrera, L., Calvet, F. et al., 1983. El Terciario. In: I.G.M.E.(ed): Estudio geológico del Maestrazgo y de la mitad meridional de los Catalánides. 1179.Google Scholar
Anadón, P., Colombo, F., Esteban, M. et al., 1979. Evolución tectonoestratigráfica de los Catalánides. Acta Geològica Hispànica, 14: 242270.Google Scholar
Banda, E. and Correig, A.M. 1984., The Catalan earthquake of February 2, 1428. Engineering Geology, 20: 8997.Google Scholar
Bartrina, M.T., Cabrera, L., Jurado, MJ., Guimerà, J., and Roca, E., 1992. Evolution of the central Catalan Margin in the Valencia trough (Western Mediterranean). Tectonophysics, 203: 219247.Google Scholar
Camelbeeck, T and Meghraoui, M., 1996. Large earthquake in Northern Europe more likely than once thought. Eos, 77 (42): 405416.Google Scholar
Camelbeeck, T., Vanneste, K., Verbeeck, K. et al., 2001. Long-term seismic activity in the Lower Rhine Embayment. Cahiers du Centre Européen de Géodynamique et de Séismologie, 18, 3538.Google Scholar
Fontboté, J.M., 1954. Las relaciones tectónicas de la depresión del Vallès-Pendès con la Cordillera Prelitoral y con la depresión del Ebro. Anonymous (ed): Tomo Homenaje al profesor E. Hernández Pacheco. Revista de la Sociedad Española de Historia Natural : 281310.Google Scholar
Guimerà, J., 1984. Palaeogene evolution of deformation in the northeastern Iberian Pensinsula. Geological Magazine 121 (5): 413420.Google Scholar
Julivert, M., Fontboté, JM., Ribeiro, A., et al., 1972. Memoria explicativa del mapa tectónico de la Península Ibérica y Baleares. Madrid: I.G.M.E. 113 pp.Google Scholar
Maldonado, A., Alonso, B., Díaz, J.I. et al., 1986. Mapa geológico de la plataforma continental española y zonas adyacentes. Escala 1:200 000, Hoja n° 41–42 de Tortosa-Tarragona. Mem. expl. 78 p. Madrid. I.G.M.E.; 4142.Google Scholar
Masana, E., 1994. El análisis de la red fluvial en el estudio de la neotectónica en las Cadenas Costeras Catalanas. In: Geomorfologia en España Actas de la III Reunión de Geomorfologia, Logroño. 1994; 2941.Google Scholar
Masana, E., 1994. Neotectonic features in the Catalan Coastal Ranges, Northeastern Spain. Acta Geológica Hispánica. 29 (24): 107121.Google Scholar
Masana, E., 1995. L’activitat neotectònica a les Cadenes Costaneres Catalanes. PhD thesis, University of Barcelona, 444 pp.Google Scholar
Masana, E., 1996. Evidence for past earthquakes in an area of low historical seismicity: the Catalan coastal ranges, NE Spain. Annali di Geofísica, XXXIX: 689704.Google Scholar
Masana, E., Villamarín, J.A. and Santanach, P., 2001. Paleoseismic results from multiple trenching analysis along a silent fault: The el Camp fault (Tarragona, northeastern Iberian Peninsula). Acta Geológica Hispànica, 36 (34): 329354.Google Scholar
Nuñez, A., Colodrón, I., Ruiz, V., Cabañas, I. and Uralde, M.A., 1980. Mapa geologico de España E. 1:50000 (Reus), Segunda serie, Mem. explic. Madrid, IGME, 33 p.Google Scholar
Sàbat, F., Roca, E., Muñoz, J.A. et al., 1997. Role of extension and compression in the evolution of the eastern margin of Iberia: the ESCI-Valencia Trough seismic profile. Revista de la Sociedad Geológica de España, 8 (1995) (4): 431448.Google Scholar
Santanach, P., Masana, E. and Villamarín, J.A., 2001. Proyecto Datación, 160 pp. Consejo de Seguridad Nuclear, Madrid.Google Scholar
Villamarín, J.A., Masana, E., Calderón, T., Julià, R., and Santanach, P., 1999. Abanicos aluviales cuaternarios del Baix Camp (provincia de Tarragona): resultados de dataciones radiométricas. Geogaceta, 25: 211214.Google Scholar
Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84, 9741002.CrossRefGoogle Scholar