Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:53:33.073Z Has data issue: false hasContentIssue false

Woodlands of the past — The excavation of wetland woods at Zwolle-Stadshagen (the Netherlands): Reconstruction of the wetland wood in its environmental context

Published online by Cambridge University Press:  01 April 2016

M.J. Kooistra*
Affiliation:
International Soil Reference and Information Centre (ISRIC), P.O. Box 353, 6700 AJ Wageningen, the Netherlands. Previously Alterra, Green World Research, Wageningen, the Netherlands
L.I. Kooistra
Affiliation:
Biax Consult, Hogendijk 134, 1506 AL Zaandam, the Netherlands
P. van Rijn
Affiliation:
Biax Consult, Hogendijk 134, 1506 AL Zaandam, the Netherlands
U. Sass-Klaassen
Affiliation:
Netherlands Centre for Dendrochronology, Ring Foundation, P.O. Box 1600, 3800 BP Amersfoort, the Netherlands and Wageningen University, Environmental Science, Forest Ecology and Forest Management Group, P.O. Box 342, 6700 AH Wageningen, the Netherlands
*
*Corresponding author. Email:maja.kooistra@wur.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Information on the vegetation and landscape history of a region is often limited, and available data are hard to interprete. A concept is presented here on how a more comprehensive picture of the structure and development of landscapes and vegetations of the past can be gained by integrating the information of several disciplines. Archaeological field methods have been combined with methods used in landscape studies (geology, soil science, micromorphology) and vegetation studies (ecology, palynology and dendrochronology).

This concept has been applied and tested during an integrated study of a buried woodland at Zwolle-Stadshagen (Province of Overijssel, the Netherlands). Many large wood remnants were found in a peat layer preserved below a thick clay deposit. The wood remnants were dated by using dendrochronology to the period between ca. 150 BC and AD 580 (ca. 2200 - 1400 cal. BP). Two phases could be distinguished in the development of the peat. The woodland consisted of a closed stand with ash, alder and oak as main species, in the first phase mostly resembling an alder carr, and in the second one the near-extinct Filipendulo-Alnetum Passage et Hofmann 1968. No evidence of exploitation of the woodland by man nor of animal foraging was found.

The followed integrated procedure has led to a more substantiated reconstruction of the palaeo-environment with its wetland wood, but also of the influence of human activities on the palaeo-landscape and its woodlands, that could not have been obtained otherwise.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2006

References

Andersen, S.Th., 1970. The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersøgelse Series II, 96: 1–99.Google Scholar
Andersen, S.Th., 1973. The differential pollen productivity of trees. In: Birks, H.J.B. & West, R.G. (eds): Quaternary Plant Ecology (Oxford): 109–115.Google Scholar
Baillie, M.G.L., 1994. Dendrochronology raises questions about the nature of the AD 536 dust-veil event. The Holocene 4: 212–217.Google Scholar
Baillie, M.G.L., 1996. Extreme environmental events and the linking of the tree-ring and ice-core records. In: Dean, J.S., Meko, D.M. & Swetnam, T.W. (eds): Tree Rings, Environment, and Humanity. Radiocarbon, Department of Geosciences, The University of Arizona (Tucson): 703–711.Google Scholar
Baillie, M., 1999. Exodus to Arthur: catastrophic encounters with comets. Batsford (London): 272 pp.Google Scholar
Bakels, C.C., Kok, R.S., Kooistra, L.I. & Vermeeren, C., 2000. The plant remains from Gouda-Oostpolder, a twelfth century farm in the peatlands of Holland, Vegetation History and Archaeobotany 9: 147–160.Google Scholar
Behre, K.-E., 1981. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23: 225–245.Google Scholar
Birks, H.J.B. & Gordon, A.D., 1985. Numerical methods in quaternary pollen analysis (London): 317 pp.Google Scholar
Bisdom, E.B.A. & Schoonderbeek, D., 1983. The characterization of the shape of mineral grains in thin sections of soils by Quantimet and BESI. Geoderma 30: 303 332.Google Scholar
Bradshaw, R., 1991. Spatial scale in the pollen record. In: Harris, D. & Thomas, K.D. (ed.): Modelling Ecological Change. Perspectives from Neoecology, Palaeoecology and Environmental Archaeology, Papers from the Tenth Anniversary Conference of the Association for Environmental Archaeology held at the Institute of Archaeology, UCL, July 1989: 41–52.Google Scholar
Buurman, P., Pape, Th. & Muggler, C.C., 1997. Laser grain-size determination of soil genetic studies 1. Practical problems. Soil Science, 162: 211 218.Google Scholar
Buurman, P., Pape, Th., Reijneveld, J.A., De Jong, F. & Van Gelder, E., 2001. Laser-diffraction and pipette-method grain sizing of Dutch sediments: correlations for fine fractions of marine, fluvial, and loess samples. Netherlands Journal of Geosciences 80 (2): 49–57.Google Scholar
Clerkx, A.P.P.M., Van Dort, K.W., Hommel, P.W.F.M., Stortelder, A.H.F., Vrielink, J.G., De Waal, R.W. & Wolf, R.J.A.M., 1994. Broekbossen van Nederland, IBM-rapport 096 (Wageningen): 369 pp.Google Scholar
Eilander, D.A. & Heijink, W., 1990. Bodemkaart van Nederland 1:50.000. Blad 21 West Zwolle. DLO-Staring Centrum (Wageningen): 165 pp.Google Scholar
Ente, P.J., 1971. Sedimentary geology of the Holocene in Lake Ussel region. Geologie en Mijnbouw, 50: 373–382.Google Scholar
Ente, P.J., 1986. Het ontstaan van het Marsdiep en de Zuiderzee. Werkdocument 1986–102. Rijksdienst voor de IJsselmeerpolders (Lelystad): 34 pp.Google Scholar
Ente, P.J., Haans, J.C.F.M. & Knibbe, M., 1965. De bodem van Overijssel, de Noordoostpolder en Oostelijk Flevoland. Stichting voor Bodemkartering (Wageningen): 104 pp.Google Scholar
Erdtman, G., 1960. The acetolysis method. Svensk Botan. Tids., 54: 561–564.Google Scholar
Evans, A.T. & Moore, P.D., 1985. Surface Pollen Studies of Calluna vulgaris (L.) Hull and their Relevance to the Interpretation of Bog and Moorland Pollen Diagrams, Circeae 3: 173–178.Google Scholar
Fægri, K., Kaland, P.E. & Krzywinski, K., 1989. Textbook of pollenanalysis, 4th edition, (Chichester): 320 pp.Google Scholar
Gaillard, M.-J., Birks, H.J.B., Emanuelsson, U., Karlsson, S., Lagerås, P. & Olausson, D., 1994. Application of modem pollen/land-use relationships to the interpretation of pollen diagrams-reconstructions of land-use history in south Sweden 3000–0 BP. Review of Palaeobotany and Palynology 82: 47–73.Google Scholar
Hicks, S., 2001. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Review of Palaeobotany and Palynology 117: 1–29.Google Scholar
I.S.S.S.-ISRIC-F.A.O., 1998. World reference base for soil resources. World Soil Resources Reports 84. F.A.O. (Rome): 91 pp.Google Scholar
Janssen, C.R., 1974. Verkenningen in de palynologie (Utrecht): 176 pp.Google Scholar
Janssen, C.R., 1984. Modern Pollen Assemblages and Vegetation in the Myrtle lake peatland, Minnesota, Ecological Monographs 54: 213–252.Google Scholar
Jongerius, A. & Heintzberger, G., 1975. Methods in soil micromorphology; a technique for the preparation of large thin sections. Soil Survey Papers 10, Soil Survey Institute (Wageningen, the Netherlands): 48 pp.Google Scholar
Keys, D., 1999. Catastrophe: an investigation into the origins of the modern world. Century (London): 368 pp.Google Scholar
Konert, M. & Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523 535.Google Scholar
Kooistra, M.J., 1990. The future of soil micromorphology. In: Douglas, L.A. (ed.): Soil micromorphology. Elsevier (Amsterdam) 1990: 1–8.Google Scholar
Kooistra, M.J., 1991. A micromorphological approach to the interactions between soil structure and soil biota, In: Agriculture, Ecosystems and Environment 34: 315–328.Google Scholar
Kooistra, M.J. & Kooistra, L.I., 2003. Integrated research in archaeology using soil micromorphology and palynology. Catena 54: 603–617.Google Scholar
Kuijer, P.C. & Rosing, H., 1994. Bodemkaart van Nederland 1:50.000. Blad 21 Oost Zwolle. DLO-Staring Centrum (Wageningen): 175 pp.Google Scholar
Lanting, J.N. & Mook, W.G., 1977. The pre- and protohistory of the Netherlands in terms of radiocarbon dates (Groningen): 247 pp.Google Scholar
Larsen, L.B., 2002. The sixth century climatic catastrophe told by the ice cores. In: Environmental catastrophes and recoveries in the Holocene, abstracts conference August 9 - September 2, 2002. Department of Geography & Earth Sciences, Brunei University (Uxbridge, U.K.): http://www.brunel.ac.uk/depts/geo/Catastrophes.Google Scholar
Leuschner, H.H., Sass-Klaassen, U., Jansma, E., Baillie, M.G.L. & Spurk, M., 2002. Subfossil European bog oaks: population dynamics and long-term growth depressions as indicators of changes in the Holocene hydro-regime and climate. The Holocene 12: 695–706.CrossRefGoogle Scholar
Leuschner, H.H. & Sass-Klaassen, U., 2003. Subfossil oaks from bogs in NW Europe as a (dendro)archaeological archive. In: Bauerochse, A. & Hassmann, H. (eds): Peatlands; Proceedings of the Peatland Conference 2002 in Hannover. Rahden/Westf.: Leidorf, Germany: 210–216.Google Scholar
Makaske, B., Van Smeerdijk, D.G., Peeters, H., Mulder, J.R. & Spek, T., 2003. Relative water-level rise in the Flevo lagoon (the Netherlands), 5300–2000 cal. yr BC: an evaluation of new and existing basal peat time-depth data. Netherlands Journal of Geosciences / Geologie en Mijnbouw 82 (2): 115–131.Google Scholar
Moore, P.D., Webb, J.A. & Collinson, M.E., 1991. Pollen Analysis (Oxford): 216 pp.Google Scholar
Munsell Soil Color Charts, 1975. Munsell Color Company, Inc. (Baltimore, Maryland): 40 pp.Google Scholar
Pals, J.P., Van Geel, B. & Delfos, A., 1980. Palaeoecological Studies in the Klokkeweel Bog near Hoogkarspel (Noord-Holland), Review of Palaeobotany and Palynology 30: 371–418.Google Scholar
Punt, W., 1976. The Northwest European Pollen Flora I (Amsterdam): 145 pp.Google Scholar
Punt, W. & Clarke, G.C.S., 1980. The Northwest European Pollen Flora II (Amsterdam): 265 pp.Google Scholar
Punt, W. & Clarke, G.C.S., 1981. The Northwest European Pollen Flora III (Amsterdam): 138 pp.Google Scholar
Punt, W. & Clarke, G.C.S., 1984. The Northwest European Pollen Flora IV (Amsterdam): 369 pp.Google Scholar
Punt, W., Blackmore, S. & Clarke, G.C.S., 1988. The Northwest European Pollen Flora V (Amsterdam): 154 pp.Google Scholar
Punt, W. & Blackmore, S., 1991. The Northwest European Pollen Flora VI (Amsterdam): 275 pp.Google Scholar
Punt, W., Blackmore, S. & Hoen, P.P., 1995. The Northwest European Pollen Flora VII (Amsterdam): 275 pp.Google Scholar
Reineck, H.E. & Singh, I.B., 1973. Depositional Sedimentary Environments. Springer Verlag (Berlin): 439 pp.Google Scholar
Sass-Klaassen, U. & Hanraets, E., 2006. Woodlands of the past. The excavation of wetland woods at Zwolle-Stadshagen (the Netherlands): Growth pattern and population dynamics of oak and ash. Netherlands Journal of Geosciences 85 (1), 61–71.Google Scholar
Schweingruber, F.H., 1982. Mikroskopische Holzanatomie. Swiss Federal Institute of Forestry Research (Birmensdorf): 226 pp.Google Scholar
Soil Survey Staff, 1999. Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. Second edition. USDA-RCS (Washington): 754 pp.Google Scholar
Stiboka, , 1966. Bodemkaart van Nederland 1:50.000, Blad 27 Oost, Hattum. Stichting voor Bodemkartering (Wageningen): 127 pp.Google Scholar
Stortelder, A.F.H., Schaminée, J.H.J. & Hommel, P.W.F.M., 1999. De vegetatie van Nederland Deel 5. Plantengemeenschappen van ruigten, struwelen en bossen (Leiden): 376 pp.Google Scholar
Ten Cate, J.A.M., Van Holst, A.F., Kleijer, H. & Stolp, J., 1995. Handleiding bodemgeografisch onderzoek; richtlijnen en voorschriften. Deel A: Bodem. Technisch Document 19A, DLO - Staring Centrum (Wageningen): 222 pp.Google Scholar
Törnqvist, T.E. & Bierkens, M.P.F., 1994. How smooth should curves be for calibration of radiocarbon ages? Radiocarbon 36: 11–26.Google Scholar
Van de Meene, E.A., 1979. Het ontstaan van de Gelderse IJssel. In. K.N.A.G. Geografisch Tijdschrift, Nieuwe Reeks 13, 3: 202–210.Google Scholar
Van den Bremt, P., Dirkx, J., During, R., Van Geel, B., Kooistra, L. & Tak, G., 1998: Een stekelig beeld van het Atlantische bos. Landschap 15/4: 245–250.Google Scholar
Van der Plassche, O., 1982. Sea level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36-1: 93 pp.Google Scholar
Van der Plicht, J., 1993. The Groningen radiocarbon calibration program. Radiocarbon 35: 231–237.Google Scholar
Van der Werf, S., 1991. Natuurbeheer in Nederland. Deel 5 Bosgemeenschappen (Wageningen): 375 pp.Google Scholar
Van Geel, B., 1978. A Palaeoecological Study of Holocene Peat Bog Sections, based on the Analysis of Pollen, Sporen and Macro- and Microscopic Remains of Fungi, Algae, Cormophytes and Animals. Review of Paleobotany and Palynology, 25: 1–120.Google Scholar
Van Geel, B., Bohncke, S.J.P. & Dee, H., 1981. A Palaeoecological Study of an upper Late Glacial and Holocene sequence from ’De Borchert’, the Netherlands, Review of Palaeobotany and Palynology, 31: 367–448.Google Scholar
Van Geel, B., Buurman, J. & Waterbolk, H.T., 1996. Archaeological and paleoecological indications for an abrupt climate change in the Netherlands and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11: 451–460.3.0.CO;2-9>CrossRefGoogle Scholar
Van Geel, B., Coope, G.R. & Van der Hammen, I., 1989. Palaeoecology and Stratigraphy of the lateglacial type section at Usselo (the Netherlands), Review of Palaeobotany and Palynology 60: 25–129.CrossRefGoogle Scholar
Van Geel, B., Van der Plicht, J., Kilian, M.R., Klaver, E.R., Kouwenberg, J.H.M., Renssen, H., Reynaud-Tarrera, I. & Waterbolk, H.T., 1998. The sharp rise of ∆14C ca. 800 cal. BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40: 535–550.Google Scholar
Vera, F.W.M., 1997. Metaforen voor de Wildernis. Eik, hazelaar, rund en paard, Ph. D. Thesis (’s-Gravenhage): 426 pp.Google Scholar
Vera, F.W.M., 2000. Grazing Ecology and Forest History (Oxford): 506 pp.Google Scholar
Wiggers, A.J., 1955. De wording van het Noordoostpoldergebied. Proefschrift, Universiteit van Amsterdam. (Amsterdam): 216 pp.Google Scholar
Wolfert, H.P., 2001. Geomorphological change and river rehabilitation. Case studies on lowland fluvial systems in the Netherlands. Alterra Scientific Contributions 6. Alterra Green Wold Research (Wageningen): 200 pp.Google Scholar
Zagwijn, W., 1986. Nederland in het Holoceen, geologie van Nederland. Rijks Geologische Dienst (Haarlem): 56 pp.Google Scholar
Zeiler, J.T. & Kooistra, L.I., 1998. Parklandschap of Oerbos? Interpretatie van het prehistorische landschap op basis van dieren- en plantenresten, Lutra 40: 65–76.Google Scholar
Zuur, A.J., 1954. Bodemkunde der Nederlandse bedijkingen en droogmakerijen. Deel, B. Hoofdsamenstelling en andere zgn. chemische bestanddelen van op water gewonnen gronden. Direktie van Rijksdienst voor de IJsselmeerpolders en Landbouwhogeschool (Kampen): 100 pp.Google Scholar