Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T11:35:32.705Z Has data issue: false hasContentIssue false

Young tectonic and halokinetic movements in the North-German-Basin: its effect on formation of modern rivers and surface morphology

Published online by Cambridge University Press:  01 April 2016

F. Sirocko
Affiliation:
Institute for Geoscience, Johannes Gutenberg-Unversity Mainz, 55099 Mainz, Germany
T. Szeder
Affiliation:
Institute for Geoscience, Johannes Gutenberg-Unversity Mainz, 55099 Mainz, Germany
C. Seelos
Affiliation:
Institute for Geoscience, Johannes Gutenberg-Unversity Mainz, 55099 Mainz, Germany
R. Lehne
Affiliation:
Institute for Geoscience, Johannes Gutenberg-Unversity Mainz, 55099 Mainz, Germany
B. Rein
Affiliation:
Institute for Geoscience, Johannes Gutenberg-Unversity Mainz, 55099 Mainz, Germany
W.M. Schneider
Affiliation:
RWE/DEA AG für Mineralöl und Chemie, Überseering 40, 22297 Hamburg, Germany
M. Dimke
Affiliation:
RWE/DEA AG für Mineralöl und Chemie, Überseering 40, 22297 Hamburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Field mapping of fluvial terraces, aerial photographs, ground penetrating radar and seismic data from gas and oil exploration were used at four different locations to detect young tectonic and halokinetic movements in the North-German-Basin.

i) The course of the Rivers Weser and Aller follow precisely a shallow Tertiary graben on the northwestern flank of the Verden salt diapir. Recent local depressions and vegetation anomalies on the alluvial plain have the same orientation as the strike direction of the faults at subsurface depth. Apparently, the river follows tectonic lines, and thus the river sediments can be used for the interpretation of recent crustal movements.

ii) The Wedehof diapir, in contrast, is topped by a local topographic high which follows exactly the shape of the underlying salt. Either the diapir formed an obstacle for the advance of the continental glaciers or one has to assume halokinetic uplift of more than 50 m during the post-Saalian Pleistocene. Either way, the Wedehof diapir shows control of the modern surface morphology by halokinesis.

iii) The course of the river Hunte, in contrast, outside the area of salt diapirism, shows anomalies of incision and terrace width over a local updoming caused by tectonic inversion of distinct blocks in the basin. The confluence of several tributaries of the Hunte lies exactly over the updoming of Barnstorf. Thus, the rivers do not avoid the local high, but focus in this area, which is characterised by a graben on top of the domestructure, as visible in seismic profiles. Again, tectonism controls river development.

iv) The last case study is from Lake Plön, where seismic profiles reveal that linear shorelines of the lake parallel the flanks of two local graben structures of Tertiary age. It is apparent that the Weichselian glaciers that formed the lake and the surrounding moraines interacted with the existing grabens.

The Tertiary morphology in the North German basin was apparently draped by Quaternary glacial deposits, but rivers and lakes that dominate the topography of the modern landscape still reflect the geodynamic centers of Tertiary tectonism and halokinesis. Faults from the depth of the Tertiary penetrate the Quaternary strata and allow upward fluid migration, which becomes visible on aerial photographs as linear vegetation anomalies.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Boigk, H., 1981. Erdöl und Erdgas in der Bundesrepublik Deutschland. EnkeVerlag (Stuttgart).Google Scholar
Caspers, G., Jordan, H., Merkt, J., Meyer, K.D., Müller, H. & Streif, H., 1995. Niedersachsen. In: Benda, L. (Ed.): Das Quartär Deutschlands. Gebrüder Borntraeger (Stuttgart).Google Scholar
Erlenkeuser, H. & Willkomm, H., 1979. 13C und 14C Untersuchungen an Sedimenten des Großen Plöner Sees. Arch. Hydrobiologie 85/1: 129.Google Scholar
Ihde, J., Steinberg, J., Ellenberg, J. & Bankwitz, E., 1987. On recent vertical crustal movements derived from revellings within the terretory of the G.D.R. Gerlands Beiträge Geophysik: 206217.Google Scholar
Jaritz, W., 1980. Einige Aspekte der Entwicklungsgeschichte der nordwest-deutschen Salzstöcke. Zeitschrift der deutschen geologischen Gesellschaft 131: 387408.Google Scholar
Johnston, P., Wu, P. & Lambeck, K., 1998. Dependence of horizontal stress magnitude on load dimension in glacial rebound models. Geophysical Journal International 132, 4160.CrossRefGoogle Scholar
Kuster, H. & Meyer, K.D., 1993. Karte der Lage der Quartärbasis in Niedersachsen und Bremen, 1:500.000. Niedersächsisches Landesamt für Bodenforschung, Hannover.Google Scholar
Lehne, R., 2000. Subrosion und jüngste Hebungsraten des Wede-hof-Diapirs im Projektgebiet Posthausen-Völkersen. Diploma Thesis. Institut für Geowissen-schaften Johannes Gutenberg-Universität Mainz.Google Scholar
Leydecker, G., 1999. Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800–1994. http://www.bgr.de/quakecat.Google Scholar
Liedtke, H., 1981. Die nordischen Vereisungen in Mitteleuropa. Forschungen zur Deutschen Landeskunde 204, Selbstverlag Zentralausschuß für Deutsche Landeskunde-Trier.Google Scholar
Ouchi, S., 1985. Response of alluvial rivers to slow active tectonic movement. Geological Society of America Bulletin 96: 504515.Google Scholar
Piotrowski, J.A., 1997. Subglacial hydrology in northwestern Germany during the last glaciation: groundwater flow, tunnel valleys and hydrological cycles. Quaternary Science Reviews 16: 169185.Google Scholar
Preussische Messtischblätter, 1898. Königl. Preuss. Landesaufnahme 1 : 25.000. Hannover, Niedersächsisches Landesverwaltungsamt - Landesvermessungsamt.Google Scholar
Ross, P.-H., 1998. Salzaufstieg und Geländemorphologie in Schleswig Holstein - der Segeberger Salzstock und seine schutzwürdige Karstlandschaft. Jahrbuch für den Kreis Segeberg. Verlag C.H.Wäser (Bad Segeberg).Google Scholar
Schirrmeister, L., 1999. Die Position weichselzeitlicher Eisrandlagen in Nord-deutschland und ihre Bezug zu unterlagernden Salzstrukturen. Zeitschrift für geologische Wissenschaften 27 (5/6): 111120.Google Scholar
Schumm, S.A., 1986. Alluvial River Response to Active Tectonics. Active Tectonic Studies in: Geophysical National Academic Press (Washington, D.C.): 8094.Google Scholar
Schumm, S.A. & Spitz, W.J., 1996. Geological influences on the Lower Mississippi River and its alluvial valley. Engineering Geology 45: 245261.Google Scholar
Seelos, K., 2000. Einfluß halokinetischer Prozesse auf die Landschaftsformung im Projektgebiet Völkersen-Verden, Niedersachsen. Diploma Thesis. Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz.Google Scholar
Schwab, G. & Ludwig, A.O., 1996. Zum Relief der Quartärbasis in Norddeutschland. Bemerkungen zu einer neuen Karte. Zeitschrift für geologische Wissenschaften 25 (3/4): 343349.Google Scholar
Teichmüller, R., 1948. Das Oberflächenbild des Salzdomes von Segeberg in Holstein. Zeitschrift der Deutschen Geologischen Gesellschaft 98: 729.CrossRefGoogle Scholar
Tectonic Atlas of NW-Germany, 1996. Hannover, Bundesanstalt für Geowissen-schaften und Rohstoffe. 1:300.000.Google Scholar
Walter, R., 1992. Geologie von Mitteleuropa. E. Schweizerbartsche Verlagsbuch handlung. (Stuttgart).Google Scholar