Article contents
Block dense weighted networks with augmented degree correction
Published online by Cambridge University Press: 14 September 2022
Abstract
Dense networks with weighted connections often exhibit a community-like structure, where although most nodes are connected to each other, different patterns of edge weights may emerge depending on each node’s community membership. We propose a new framework for generating and estimating dense weighted networks with potentially different connectivity patterns across different communities. The proposed model relies on a particular class of functions which map individual node characteristics to the edges connecting those nodes, allowing for flexibility while requiring a small number of parameters relative to the number of edges. By leveraging the estimation techniques, we also develop a bootstrap methodology for generating new networks on the same set of vertices, which may be useful in circumstances where multiple data sets cannot be collected. Performance of these methods is analyzed in theory, simulations, and real data.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
Footnotes
Action Editor: Fernando Vega-Redondo
The second author was supported in part by the NSF grant DMS-1712966.
References
- 2
- Cited by