Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T16:51:28.411Z Has data issue: false hasContentIssue false

Diffusion profile embedding as a basis for graph vertex similarity

Published online by Cambridge University Press:  07 October 2021

Scott Payne
Affiliation:
Department of Mathematics, West Virginia University, Morgantown, WV, USA (e-mails: spayne7@mix.wvu.edu, cun-quan.zhang@mail.wvu.edu),
Edgar Fuller*
Affiliation:
Department of Mathematics and Statistics, Florida International University, Miami, FL, USA
George Spirou
Affiliation:
Department of Medical Engineering, University of South Florida, Tampa, FL, USA (e-mail: gspirou@usf.edu)
Cun-Quan Zhang
Affiliation:
Department of Mathematics, West Virginia University, Morgantown, WV, USA (e-mails: spayne7@mix.wvu.edu, cun-quan.zhang@mail.wvu.edu),
*
*Corresponding author. Email: ejfuller@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe here a notion of diffusion similarity, a method for defining similarity between vertices in a given graph using the properties of random walks on the graph to model the relationships between vertices. Using the approach of graph vertex embedding, we characterize a vertex vi by considering two types of diffusion patterns: the ways in which random walks emanate from the vertex vi to the remaining graph and how they converge to the vertex vi from the graph. We define the similarity of two vertices vi and vj as the average of the cosine similarity of the vectors characterizing vi and vj. We obtain these vectors by modifying the solution to a differential equation describing a type of continuous time random walk.

This method can be applied to any dataset that can be assigned a graph structure that is weighted or unweighted, directed or undirected. It can be used to represent similarity of vertices within community structures of a network while at the same time representing similarity of vertices within layered substructures (e.g., bipartite subgraphs) of the network. To validate the performance of our method, we apply it to synthetic data as well as the neural connectome of the C. elegans worm and a connectome of neurons in the mouse retina. A tool developed to characterize the accuracy of the similarity values in detecting community structures, the uncertainty index, is introduced in this paper as a measure of the quality of similarity methods.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Footnotes

Action Editor: Ulrik Brandes

References

Altun, Z., Hall, D. H., Wolkow, C. A., Crocker, C., & Lints, R. Handbook of C. Elegans Anatomy. Wormatlas 2002–2021.Google Scholar
Angstmann, C. N., Donnelly, I. C., & Henry, B. I. (2013). Pattern formation on networks with reactions: A continuous-time random-walk approach. Physical Review E, 87(Mar), 032804.CrossRefGoogle Scholar
Avrachenkov, K., Chebotarev, P., & Rubanov, D. (2019). Similarities on graphs: Kernels versus proximity measures. European Journal of Combinatorics, 80, 47–56. Special Issue in Memory of Michel Marie Deza.CrossRefGoogle Scholar
Bai, X., Wilson, R. C., & Hancock, E. R. (2005). Manifold embedding of graphs using the heat kernel. In R. Martin, H. Bez, & M. Sabin (Eds.), Mathematics of surfaces xi (pp. 3449). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Bock, D. D., Lee, W.-C. A., Kerlin, A. M., Andermann, M. L., Hood, G., Wetzel, A. W., Yurgenson, S., Soucy, E. R., Kim, H. Suk, & Reid, R. C. (2011). Network anatomy and in vivo physiology of visual cortical neurons. Nature, 471(7337), 177182.CrossRefGoogle ScholarPubMed
Bondy, A., & Murty, M. R. (2008). Graph theory. Springer.CrossRefGoogle Scholar
Brandes, U. (2016). Network positions. Methodological Innovations, 9, 119.CrossRefGoogle Scholar
Brauer, F., & Nohel, J. (1969). The qualitative theory of ordinary differential equations, an introduction. New York: W. A. Benjamin.Google Scholar
Brenner, S. (1973). The Genetics of Behaviour. British Medical Bulletin, 29(3), 269271.CrossRefGoogle ScholarPubMed
Briggman, K. L., Helmstaedter, M., & Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature, 471(7337), 183188.CrossRefGoogle ScholarPubMed
Chalfie, M., & Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of caenorhabditis elegans. Developmental Biology, 82(2), 358370.CrossRefGoogle ScholarPubMed
Chalfie, M, Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis Elegans. Journal of Neuroscience, 5(4), 956964.CrossRefGoogle ScholarPubMed
Chan, P. K., Schlag, M. D. F., & Zien, J. Y. (1994). Spectral k-way ratio-cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(9), 10881096.CrossRefGoogle Scholar
Chen, B. L., Hall, D. H., & Chklovskii, D. B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences, 103(12), 47234728.CrossRefGoogle ScholarPubMed
Chen, B. L.-J. (2007). Neuronal network of c.elegans: From anatomy to behavior. Ph.D. thesis, The Watson School of Biological Sciences at Cold Spring Harbor Laboratory.Google Scholar
Cheng, X., Rachh, M., & Steinerberger, S. (2019). On the diffusion geometry of graph Laplacians and applications. Applied and Computational Harmonic Analysis, 46(3), 674688.CrossRefGoogle Scholar
Chung, F. (1997). Spectral graph theory. American Mathematical Society.Google Scholar
Chung, F. (2007). The heat Kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences, 104(50), 1973519740.CrossRefGoogle Scholar
Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. C. Q., Tang, L. T. H, Bayer, E. A., Duerr, J. S., Bülow, H. E., Hobert, O., Hall, D. H., & Emmons, S. W. (2019). Whole-animal connectomes of both caenorhabditis elegans sexes. Nature, 571(7763), 6371.CrossRefGoogle Scholar
Cooper, K., & Barahona, M. (2010). Role-based similarity in directed networks.Google Scholar
Corsi, A. K, Wightman, B., & Chalfie, M. (2015). A transparent window into biology: A primer on caenorhabditis elegans. Genetics, 200(2), 387407.CrossRefGoogle ScholarPubMed
Delvenne, J.-C., Schaub, M.T., Yaliraki, S.N., & Barahona, M. (2013). The stability of a graph partition: A dynamics-based framework for community detection. Dynamics On and Of complex Networks, 2, 221242.Google Scholar
Diestel, R. (2017). Graph theory. Springer.CrossRefGoogle Scholar
Eisenmann, D. M. (2005). Wormbook: The online review of c. elegans biology. Research Community, Wormbook.Google Scholar
Emmons, S. W. (2015). The beginning of connectomics: A commentary on White et al. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140309.Google Scholar
Erdös, P., & Rényi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290297.Google Scholar
Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publ Math. Inst, 5, 1761.Google Scholar
Estrada, E., & Silver, G. (2017). Accounting for the role of long walks on networks via a new matrix function. J. Appl Math. Anal, 449, 15811600.CrossRefGoogle Scholar
Fiedler, M. (1989). Laplacian of graphs and algebraic connectivity. Banach Center Publications, 25(1), 5770.CrossRefGoogle Scholar
Fouss, F., Yen, L., Pirotte, A., & Saerens, M. (2006). An experimental investigation of graph kernels on a collaborative recommendation task. In Proceedings of the Sixth International Conference on Data Mining, ICDM’06 (pp. 863868). IEEE.CrossRefGoogle Scholar
Fouss, F., Pirotte, A., Renders, J.-M., & Saerens, M. (2007). Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering, 19(3), 355369.CrossRefGoogle Scholar
Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 16.CrossRefGoogle ScholarPubMed
Frieze, A., & Karoński, M. (2016). Introduction to random graphs. Cambridge University Press.CrossRefGoogle Scholar
Genton, M. G. (2002). Classes of Kernels for machine learning: A statistics perspective. Journal of Machine Learning Research, 2(Mar.), 299312.Google Scholar
Ghawalby, H. E., & Hancock, E. R. (2015). Heat Kernel embeddings, differential geometry and graph structure. Axioms, 4, 275293.CrossRefGoogle Scholar
Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in caenorhabditis elegans. Proceedings of the National Academy of Sciences, 102(9), 31843191.CrossRefGoogle ScholarPubMed
Helmstaedter, M., Briggman, K. L, Turaga, S. C, Jain, Viren, S., Sebastian, H. & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168174.CrossRefGoogle Scholar
Huang, W., Segarra, S., & Ribeiro, A. (2015). Diffusion distance for signals supported on networks. 2015 49th asilomar conference on signals, systems and computers (pp. 12191223).CrossRefGoogle Scholar
Jabr, F. (2012). The connectome debate: Is mapping the mind of a worm worth it? Scientific American, 18.Google Scholar
Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des dranses et dans quelques regions voisines. Bulletin de la société vaudoise des sciences naturelles, 37, 241272.Google Scholar
Jonas, E., & Kording, K. (2015). Automatic discovery of cell types and microcircuitry from neural connectomics. Elife, 4, e04250.CrossRefGoogle ScholarPubMed
Kato, S., Kaplan, H. S., Schrödel, T., Skora, S., Lindsay, T. H., Yemini, E., Lockery, S., & Zimmer, M. (2015). Global brain dynamics embed the motor command sequence of caenorhabditis elegans. Cell, 163(3), 656669.CrossRefGoogle ScholarPubMed
Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 3943.CrossRefGoogle Scholar
Kolb, Helga. (2011). Inner plexiform layer. In H. Kolb, R. Nelson, E. Fernandez, & B. Jones (Eds.), Webvision: The organization of the retina and visual system. University of Utah Health Sciences Center.Google Scholar
Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input spaces. In Proceedings of ICML (pp. 315322).Google Scholar
Kovács, I. A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.-K., Kishore, N., & Hao, T. (2019). Network-based prediction of protein interactions. Nature Communications, 10(1), 18.CrossRefGoogle Scholar
Leicht, E. A., Holme, P., & Newman, M. E. J. (2006). Vertex similarity in networks. Physics Review E, 73.CrossRefGoogle Scholar
Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J., & Samuel, A. D. T. (2011). Optogenetic manipulation of neural activity in freely moving caenorhabditis elegans. Nature Methods, 8(2), 147152.CrossRefGoogle ScholarPubMed
Lenart, C. (1998). A generalized distance in graphs and centered partitions. SIAM Journal on Discrete Mathematics, 11(2), 293304.CrossRefGoogle Scholar
Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the Association for Information Science and Technology, 58(7), 10191031.Google Scholar
Lovász, L. (1993). Random walks on graphs: A survey. Bolyai Society Mathematical Studies: Combinatorics - paul erdös is eighty, 2, 146.Google Scholar
, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and Its Applications, 390(6), 11501170.CrossRefGoogle Scholar
, L., Zhang, Y.-C., Yeung, C. H., & Zhou, T. (2011). Leaders in social networks, the delicious case. Plos One, 6(6). e21202.CrossRefGoogle ScholarPubMed
Luo, D., Ding, C., Huang, H., & Li, T. (2009). Non-negative Laplacian embedding. In 2009 Ninth IEEE International Conference on Data Mining (pp. 337346). IEEE.CrossRefGoogle Scholar
Marc, R. E., Anderson, J. R., Jones, B. W., Sigulinsky, C. L., & Lauritzen, J. S. (2014). The AII amacrine cell connectome: A dense network hub. Frontiers in Neural Circuits, 8, 104.CrossRefGoogle ScholarPubMed
Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics Reports, 716–717(November), 158.CrossRefGoogle Scholar
Meila, M., & Shi, J. (2001). A random walks view of spectral segmentation. Proceedings of the 8th international workshop on artificial intelligence and statistics.Google Scholar
Mohar, B. (1989). Isoperimetric numbers of graphs. Journal of Combinatorial Theory, Series B, 47(3), 274291.CrossRefGoogle Scholar
Ohyama, T., Schneider-Mizell, C. M., Fetter, R. D., Aleman, J. V., Franconville, R., Rivera-Alba, M., … Zlatic, M. (2015). A multilevel multimodal circuit enhances action selection in drosophila. Nature, 520, 633639.CrossRefGoogle ScholarPubMed
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Technical Report, Stanford InfoLab.Google Scholar
Pech, R., Hao, D., Lee, Y.-L., Yan, Y., & Zhou, T. (2019). Link prediction via linear optimization. Physica A: Statistical Mechanics and Its Applications, 528, 121319.CrossRefGoogle Scholar
Perrault-Joncas, D. C., & Meila, M. (2011). Directed graph embedding: An algorithm based on continuous limits of Laplacian-type operators. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 24 (pp. 990998). Curran Associates, Inc.Google Scholar
Petit, J., Lambiotte, R., & Carletti, T. (2019). Classes of random walks on temporal networks with competing timescales. Applied Network Science, 4(1), 72.CrossRefGoogle Scholar
Pirri, J. K., & Alkema, M. J. (2012). The neuroethology of c. elegans escape. Current Opinion in Neurobiology, 22(2), 187193.CrossRefGoogle ScholarPubMed
Qi, X., Wu, Q., Zhang, Y., Fuller, E., & Zhang, C.-Q. (2011). A novel model for dna sequence similarity analysis based on graph theory. Evolutionary Bioinformatics, 7, EBO–S7364.CrossRefGoogle Scholar
Qi, X., Duval, R. D., Christensen, K., Fuller, E., Spahiu, A., Wu, Q., …. Zhang, C. (2013). Terrorist networks, network energy and node removal: A new measure of centrality based on Laplacian energy. Social Networking, 2(01), 19.CrossRefGoogle Scholar
Rosvall, M., & Bergstrom, C. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 11181123.CrossRefGoogle ScholarPubMed
Rosvall, M., Axelsson, D., & Bergstrom, C. (2009). The map equation. European Physical Journal Special Topics, 178, 1323.CrossRefGoogle Scholar
Ryan, K., Lu, Z., & Meinertzhagen, I. A. (2016). The CNS connectome of a tadpole larva of Ciona intestinalis (l.) highlights sidedness in the brain of a chordate sibling. elife, 5(dec.), e16962.CrossRefGoogle ScholarPubMed
Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-Hill computer science series. McGraw-Hill.Google Scholar
Sanders, J., Nagy, S., Fetterman, G., Wright, C., Treinin, M., & Biron, D. (2013). The caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor. BMC Neuroscience, 14(Dec), 156156.CrossRefGoogle ScholarPubMed
Sawin, E. R., Ranganathan, R., & Horvitz, H. R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron, 26(3), 619631.CrossRefGoogle ScholarPubMed
Schafer, W. R. (2005). Deciphering the neural and molecular mechanisms of c. elegans behavior. Current Biology, 15(17), R723R729.CrossRefGoogle ScholarPubMed
Schuske, K., Beg, A. A., & Jorgensen, E. M. (2004). The GABA nervous system in c. elegans. Trends in Neurosciences, 27(7), 407414.CrossRefGoogle ScholarPubMed
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge Univ Press.CrossRefGoogle Scholar
Shi, J., & M., J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine intelligence, 22(8), 888905.Google Scholar
Shirkhorshidi, A. S., Aghabozorgi, S., & Wah, T. Y. (2015). A comparison study on similarity and dissimilarity measures in clustering continuous data. PLOS ONE, 10(12), 120.CrossRefGoogle Scholar
Smola, A. J., & Kondor, R. (2003). Kernels and regularization on graphs. In Learning theory and kernel machines (pp. 144–158). Springer.CrossRefGoogle Scholar
Takemura, S.-y, Nern, A., Chklovskii, D. B., Scheffer, L. K., Rubin, G. M., & Meinertzhagen, I. A. (2017). The comprehensive connectome of a neural substrate for on motion detection in Drosophila. elife, 6(Apr), e24394.Google Scholar
Thiel, K., & Berthold, M. R. (2010). Node similarities from spreading activation. In 2010 IEEE international conference on data mining (pp. 10851090).CrossRefGoogle Scholar
Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R., & Bullmore, E. T. (2013). The rich club of the c.elegans neuronal connectome. Journal of Neuroscience, 10(33), 15.Google Scholar
Van Buskirk, C., & Sternberg, P. W. (2007). Epidermal growth factor signaling induces behavioral quiescence in caenorhabditis elegans. Nature Neuroscience, 10(10), 13001307.CrossRefGoogle ScholarPubMed
Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H., & Chklovskii, D. B. Neuronal connectivity II. http://www.wormatlas.org/neuronalwiring.html.Google Scholar
Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H., & Chklovskii, D. B. (2011). Structural properties of the caenorhabditis elegans neuronal network. Plos Computational Biology, 7(2), e1001066.CrossRefGoogle ScholarPubMed
West, D. (2001). Introduction to graph theory. Prentice Hall.Google Scholar
White, J. G. (2013). Getting into the mind of a worm–a personal view. Wormbook, 110.CrossRefGoogle Scholar
White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode caenorhabditis elegans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 314(1165), 1340.Google ScholarPubMed
Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., … Bock, D. D. (2018). A complete electron microscopy volume of the brain of adult drosophila melanogaster. Cell, 174(3), 730–743.e22.CrossRefGoogle ScholarPubMed
Zhou, T., , L., & Zhang, Y.-C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623630.CrossRefGoogle Scholar
Zhou, T., Lee, Y.-L, & Wang, G. (2021). Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms. Physica A: Statistical Mechanics and Its Applications, 564. Article 125532.Google Scholar