Published online by Cambridge University Press: 12 December 2014
As social networks evolve, new nodes are linked to the large-scale organization already in place. We show that the combination of two simple algorithms, one the Barabasi-Albert preferential attachment proposal and the other a neighbor attachment rule, successfully generate networks exhibiting both the local and global characteristics of empirical data on social network structures. Ideally, one might hope that some coarse features of this linking process and the form of the local patterns might enable the prediction of large-scale properties. We show that this is generally not the case. This might help explain the variety of local and global patterns in empirical networks.