Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T05:41:41.738Z Has data issue: false hasContentIssue false

Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity

Published online by Cambridge University Press:  03 January 2014

RICHARD F. BETZEL
Affiliation:
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USAProgram in Cognitive Science, Indiana University, Bloomington, IN, USA
ALESSANDRA GRIFFA
Affiliation:
Department of Radiology, University Hospital Center and University of Lausanne (CHUV), Lausanne, SwitzerlandSignal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
ANDREA AVENA-KOENIGSBERGER
Affiliation:
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USAProgram in Cognitive Science, Indiana University, Bloomington, IN, USA
JOAQUÍN GOÑI
Affiliation:
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
JEAN-PHILIPPE THIRAN
Affiliation:
Department of Radiology, University Hospital Center and University of Lausanne (CHUV), Lausanne, SwitzerlandSignal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
PATRIC HAGMANN
Affiliation:
Department of Radiology, University Hospital Center and University of Lausanne (CHUV), Lausanne, SwitzerlandSignal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
OLAF SPORNS
Affiliation:
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USAProgram in Cognitive Science, Indiana University, Bloomington, IN, USA (e-mail: osporns@indiana.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The human connectome has been widely studied over the past decade. A principal finding is that it can be decomposed into communities of densely interconnected brain regions. Past studies have often used single-scale modularity measures in order to infer the connectome's community structure, possibly overlooking interesting structure at other organizational scales. In this report, we used the partition stability framework, which defines communities in terms of a Markov process (random walk), to infer the connectome's multi-scale community structure. Comparing the community structure to observed resting-state functional connectivity revealed communities across a broad range of scales that were closely related to functional connectivity. This result suggests a mapping between communities in structural networks, models of influence-spreading and diffusion, and brain function. It further suggests that the spread of influence among brain regions may not be limited to a single characteristic scale.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/
Copyright
Copyright © Cambridge University Press 2014

References

Albert, R., Jeong, H. & Barabási, A. L. (1999). Internet: Diameter of the world-wide web. Nature, 401 (6749), 130131.Google Scholar
Arenas, A., Fernandez, A., & Gomez, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10 (5), 053039.CrossRefGoogle Scholar
Bassett, D. S., Greenfield, D. L., Meyer-Lindenberg, A., Weinberger, D. R., Moore, S. W., & Bullmore, E. T. (2010). Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Computational Biology, 6 (4), e1000748.Google Scholar
Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M., & Mucha, P. J. (2013). Robust detection of dynamic community structure in networks. Chaos, 23 (1), 013142.Google Scholar
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences USA, 108 (18), 76417646.Google Scholar
Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J., & Grafton, S. T. (2013). Task-based core-periphery organization of human brain dynamics. PLoS Computational Biology, 9 (9), e1003171.Google Scholar
Birn, R. M., Molloy, E. K., Parker, T., Meier, T. B., Kirk, G. R., Nair, V. A., . . . Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550558.Google Scholar
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008 (10), P10008.Google Scholar
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10 (3), 186198.Google Scholar
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13 (5), 336349.Google Scholar
Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q., . . . Hagmann, P. (2012). Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of Neuroscience Methods, 203 (2), 386397.Google Scholar
Carpineto, C., & Romano, G. (2012). Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (12), 23152326.Google Scholar
Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J., & Evans, A. C. (2008). Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cerebral Cortex, 18 (10), 23742381.Google Scholar
Chu, C. W., Holliday, J. D., & Willett, P. (2012). Combining multiple classifications of chemical structures using consensus clustering. Bioorganic and Medical Chemistry, 20 (18), 53665371.Google Scholar
Daducci, A., Gerhard, S., Griffa, A., Lemkaddem, A., Cammoun, L., Gigandet, X., . . . Thiran, J. P. (2012). The Connectome Mapper: An open-source processing pipeline to map connectomes with MRI. PloS One, 7 (12), e48121.Google Scholar
Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103 (37), 1384813853.Google Scholar
Delmotte, A., Tate, E. W., Yaliraki, S. N., & Barahona, M. (2011). Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin–myosin light chain interaction. Physical Biology, 8 (5), 055010.Google Scholar
Delvenne, J. C., Yaliraki, S. N., & Barahona, M. (2010). Stability of graph communities across time scales. Proceedings of the National Academy of Sciences, 107 (29), 1275512760.Google Scholar
Fenn, D. J., Porter, M. A., McDonald, M., Williams, S., Johnson, N. F., & Jones, N. S. (2009). Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007–2008 credit crisis. Chaos, 19 (3), 033119.Google Scholar
Fenn, D. J., Porter, M. A., Mucha, P. J., McDonald, M., Williams, S., Johnson, N. F., & Jones, N. S. (2012). Dynamical clustering of exchange rates. Quantitative Finance, 12 (10), 14931520.CrossRefGoogle Scholar
Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, F. M. (2002). Self-organization and identification of web communities. Computer, 35 (3), 6670.Google Scholar
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3), 75174.Google Scholar
Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104 (1), 3641.Google Scholar
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8 (9), 700711.Google Scholar
Freeman, L. C. (2004). The development of social network analysis. Vancouver: Empirical Press.Google Scholar
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99 (12), 78217826.Google Scholar
Good, B. H., de Montjoye, Y. A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81 (4), 046106.CrossRefGoogle ScholarPubMed
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19 (3), 524536.Google Scholar
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100 (1), 253258.Google Scholar
Grinstead, C. C. M., & Snell, J. L. (Eds.). (1997). Introduction to probability (2nd ed.). Providence, RI: American Mathematical Society.Google Scholar
Guimera, R., & Amaral, L. A. N. (2005). Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005 (02), P02001.Google Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6 (7), e159.Google Scholar
Haimovici, A., Tagliazucchi, E., Balenzuela, P., & Chialvo, D. R. (2013). Brain organization into resting state networks emerges from the connectome at criticality. Physical Review Letters, 110 (17), 178101.Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. J. H. (2001). The elements of statistical learning, Vol. 1. New York: Springer.Google Scholar
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106 (6), 20352040.CrossRefGoogle ScholarPubMed
Jonsson, P. F., Cavanna, T., Zicha, D., & Bates, P. A. (2006). Cluster analysis of networks generated through homology: Automatic identification of important protein communities involved in cancer metastasis. BMC Bioinformatics, 7 (1), 2.CrossRefGoogle ScholarPubMed
Lambiotte, R. (2010). Multi-scale modularity in complex networks. In Modeling and optimization in mobile, ad hoc and wireless networks (WiOpt), 2010 Proceedings of the 8th International Symposium on (pp. 546553). Avignon, France: IEEE.Google Scholar
Lambiotte, R., Delvenne, J. C., & Barahona, M. (2008). Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770.Google Scholar
Lambiotte, R., Sinatra, R., Delvenne, J. C., Evans, T. S., Barahona, M., & Latora, V. (2011). Flow graphs: Interweaving dynamics and structure. Physical Review E, 84 (1), 017102.Google Scholar
Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks. Scientific Reports, 2, 17.CrossRefGoogle ScholarPubMed
Lewis, A. C. F., Jones, N. S., Porter, M. A., & Deane, C. M. (2010). The function of communities in protein interaction networks at multiple scales. BMC Systems Biology, 4, 100.Google Scholar
Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200.Google Scholar
Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 68 (1), 103127.CrossRefGoogle Scholar
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328 (5980), 876878.Google Scholar
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage, 44 (3), 893905.Google Scholar
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103 (23), 85778582.Google Scholar
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69 (2), 026113.Google Scholar
Onnela, J.-K., Fenn, D. J., Reid, S., Porter, M. A., Mucha, P. J., Fricker, M. D., & Jones, N. S. (2012). Taxonomies of networks from community structure. Physical Review E, 86 (3), 036104.Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59 (3), 21422154.Google Scholar
Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74 (1), 016110.CrossRefGoogle ScholarPubMed
Ronhovde, P., & Nussinov, Z. (2009). Multiresolution community detection for megascale networks by information-based replica correlations. Physical Review E, 80 (1), 016109.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56, 20682079.Google Scholar
Schaub, M. T., Delvenne, J. C., Yaliraki, S. N., & Barahona, M. (2012). Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit. PloS One, 7 (2), e32210.Google Scholar
Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H., & Johnson, K. A. (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. The Journal of Neuroscience, 32 (31), 1064910661.Google Scholar
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., . . . Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106 (31), 1304013045.CrossRefGoogle ScholarPubMed
Sporns, O., Tononi, G. & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1 (4), e42.CrossRefGoogle ScholarPubMed
Strehl, A., & Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3, 583617.Google Scholar
Topchy, A., Jain, A. K., & Punch, W. (2005). Models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (12), 18661881.CrossRefGoogle ScholarPubMed
Traag, V. A., & Bruggeman, J. (2009). Community detection in networks with positive and negative links. Physical Review E, 80 (3), 036115.Google Scholar
van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20 (8), 519534.Google Scholar
van den Heuvel, M. P., Kahn, R. S., Goñi, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences, 109 (28), 1137211377.Google Scholar
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31 (44), 1577515786.CrossRefGoogle ScholarPubMed
Vértes, P. E., Alexander-Block, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T. (2012). Simple models of human brain functional networks. Proceedings of the National Academy of Sciences, 109 (15), 58685873.Google Scholar
Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y. I., Dai, G., . . . De Crespigny, A. J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41 (4), 12671277.Google Scholar
Wu, K., Taki, Y., Sato, K., Sassa, Y., Inoue, K., Goto, R., . . . Fukuda, H. (2011). The overlapping community structure of structural brain network in young healthy individuals. PloS One, 6 (5), e19608.Google Scholar
Yu, Z., Wong, H. S., & Wang, H. (2007). Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics, 23 (21), 28882896.Google Scholar
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage, 50 (3), 970983.Google Scholar
Supplementary material: File

Betzel Supplementary Material

Supplementary Material

Download Betzel Supplementary Material(File)
File 247.1 KB
Supplementary material: File

Betzel Supplementary Material

Supplementary Material

Download Betzel Supplementary Material(File)
File 514 Bytes
Supplementary material: File

Betzel Supplementary Material

Supplementary Material

Download Betzel Supplementary Material(File)
File 1.4 KB