Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T22:32:37.290Z Has data issue: false hasContentIssue false

Is activity regulation of late myelination a plastic mechanism in the human nervous system?

Published online by Cambridge University Press:  29 September 2009

Fredrik Ullén*
Affiliation:
Neuropediatric Research Unit Q2:07, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
*
Correspondence should be addressed to: Fredrik Ullén, Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden email: Fredrik.Ullen@ki.se

Abstract

Studies on various animal models have established that neuronal activity can influence the myelination process. Are such mechanisms present in humans, and do they mediate experience-driven white matter plasticity not only during early development but also in adolescents and adults? While there is as yet no direct evidence for this, a number of findings – reviewed here – are consistent with this idea. First, postmortem and neuroimaging studies show that the human white matter development is a protracted process that continues well into adulthood. Second, developmental changes and individual differences in white matter structure are related to differences in neural activity and behavior. Finally, studies on effects of long-term training, in particular in musicians, show strong relations between training and white matter structure. I conclude by briefly discussing possible types of white matter plasticity that could underlie these findings, emphasizing a distinction between indirect myelination plasticity, where the myelin sheath grows in parallel with the axon itself, and direct myelination plasticity, where the myelin sheath thickness is modulated independently of axonal diameter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkovich, A.J., Kjos, B.O., Jackson, D.E.J. and Norman, D. (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166, 173180.CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A. et al. (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex 15, 18481854.CrossRefGoogle ScholarPubMed
Beaulieu, C. (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomedicine 15, 435455.CrossRefGoogle ScholarPubMed
Ben Bashat, D., Ben Sira, L., Graif, M., Pianka, P., Hendler, T., Cohen, Y. et al. (2002) Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images. 10th Annual Meeting of the International-Society-for-Magnetic-Resonance-in-Medicine (ISMRM). John Wiley & Sons Inc, pp. 503511.Google Scholar
Benes, F.M. (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophrenia in Bulletin 15, 585593.CrossRefGoogle ScholarPubMed
Bengtsson, S.L., Nagy, Z., Forsman, L., Forssberg, H., Skare, S. and Ullén, F. (2005) Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience 8, 11481150.CrossRefGoogle ScholarPubMed
Berthold, C.H., Nilsson, I. and Rydmark, M. (1983) Axon diameter and myelin sheath thickness in nerve-fibers of the ventral spinal root of the 7th lumbar nerve of the adult and developing cat. Journal of Anatomy 136, 483508.Google Scholar
Bonzano, L., Tacchino, A., Roccatagliata, L., Abbruzzese, G., Mancardi, G.L. and Bove, M. (2008) Callosal contributions to simultaneous bimanual finger movements. Journal of Neuroscience 28, 32273233.CrossRefGoogle ScholarPubMed
Brody, B.A., Kinney, H.C., Kloman, A.S. and Gilles, F.H. (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. Journal of Neuropathology and Experimental Neurology 46, 268301.CrossRefGoogle ScholarPubMed
Engelbrecht, V., Rassek, M., Preiss, S., Wald, C. and Modder, U. (1998) Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. American Journal of Neuroradiology 19, 19231929.Google ScholarPubMed
Engelbrecht, V., Scherer, A., Rassek, M., Witsack, H.J. and Modder, U. (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222, 410418.CrossRefGoogle ScholarPubMed
Eyre, J.A., Miller, S. and Ramesh, V. (1991) Constancy of central conduction delays during development in man: investigation of motor and sensory pathways. Journal of Physiology 434, 441452.CrossRefGoogle Scholar
Fields, R.D. (2008) White matter in learning, cognition and psychiatric disorders. Trends in Neurosciences 31, 361370.CrossRefGoogle ScholarPubMed
Flechsig, P.E. (1920) Anatomie des Menschlichen Gehirns und Ruckenmarks auf Myelogenetischer Grundlage. Thieme.Google Scholar
Friede, R.L. and Bischhausen, R. (1982) How are sheath dimensions affected by axon caliber and internode length? Brain Research 235, 335350.CrossRefGoogle ScholarPubMed
Fuentemilla, L., Camara, E., Munte, T.F., Kramer, U.M., Cunillera, T., Marco-Pallares, J. et al. (2009) Individual differences in true and false memory retrieval are related to white matter brain microstructure. Journal of Neuroscience 29, 86988703.CrossRefGoogle ScholarPubMed
Giedd, J.N. (2008) The teen brain: insights from neuroimaging. Journal of Adolescent Health 42, 335343.CrossRefGoogle ScholarPubMed
Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A. et al. (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience 2, 861863.CrossRefGoogle ScholarPubMed
Gilles, F.H., Shankle, W. and Dooling, E.C. (1983) Myelinated tracts: growth patterns. In Gilles, F.H., Leviton, A. & Dooling, E.C. (eds) The Developing Human Brain. Boston, UK: John Wright, PSG Inc., pp. 117183.CrossRefGoogle Scholar
Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N.A., Friston, K.J. and Frackowiak, R.S.J. (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14, 2136.CrossRefGoogle ScholarPubMed
Haier, R.J., Jung, R.E., Yeo, R.A., Head, K. and Alkire, M.T. (2004) Structural brain variation and general intelligence. NeuroImage 23, 425433.CrossRefGoogle ScholarPubMed
Hamano, K., Takeya, T., Iwasaki, N., Nakayama, J., Ohto, T. and Okada, Y. (1998) A quantitative study of the progress of myelination in the rat central nervous system, using the immunohistochemical method for proteolipid protein. Developmental Brain Research 108, 287293.CrossRefGoogle ScholarPubMed
Han, Y., Yang, H., Lv, Y.-T., Zhu, C.-Z., He, Y., Tang, H.-H. et al. (2009) Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters 459, 36.CrossRefGoogle Scholar
Hartline, D.K. and Colman, D.R. (2007) Rapid conduction and evolution of giant axons and myelinated fibers. Current Biology 17, R29R35.CrossRefGoogle ScholarPubMed
Hasan, K.M., Karnali, A., Kramer, L.A., Papnicolaou, A.C., Fletcher, J.M. and Ewing-Cobbs, L. (2008) Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan. Brain Research 1227, 5267.CrossRefGoogle ScholarPubMed
Haynes, R.L., Borenstein, N.S., Desilva, T.M., Folkerth, R.D., Liu, L.G., Volpe, J.J. et al. (2005) Axonal development in the cerebral white matter of the human fetus and infant. Journal of Comparative Neurology 484, 156167.CrossRefGoogle ScholarPubMed
Henkelman, R.M., Stanisz, G.J. and Graham, S.J. (2001) Magnetization transfer in MRI: a review. NMR in Biomedicine 14, 5764.CrossRefGoogle ScholarPubMed
Imfeld, A., Oechslin, M.S., Meyer, M., Loenneker, T. and Jancke, L. (2009) White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. NeuroImage 46, 600607.CrossRefGoogle ScholarPubMed
Iwasaki, N., Hamano, K., Okada, Y., Horigome, Y., Nakayama, J., Takeya, T. et al. (1997) Volumetric quantification of brain development using MRI. Neuroradiology 39, 841846.CrossRefGoogle ScholarPubMed
Johansen-Berg, H., Della-Maggiore, V., Behrens, T.E., Smith, S.M. and Paus, T. (2007) Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. NeuroImage 36 Suppl 2, T16T21.CrossRefGoogle Scholar
Kiernan, J.A. (2007) Histochemistry of staining methods for normal and degenerating myelin in the central and peripheral nervous systems. Journal of Histotechnology 30, 87106.CrossRefGoogle Scholar
Kinney, H.C., Brody, B.A., Kloman, A.S. and Gilles, F.H. (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. Journal of Neuropathology Experimental Neurology 47, 217234.CrossRefGoogle ScholarPubMed
Kinney, H.C., Karthigasan, J., Borenshteyn, N.I., Flax, J.D. and Kirschner, D.A. (1994) Myelination in the developing human brain - biochemical correlates. Neurochemistry Research 19, 983996.CrossRefGoogle ScholarPubMed
Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J.D.E., Moseley, M.E. et al. (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25, 493500.CrossRefGoogle ScholarPubMed
Knickmeyer, R.C., Gouttard, S., Kang, C.Y., Evans, D., Wilber, K., Smith, J.K. et al. (2008) A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience 28, 1217612182.CrossRefGoogle ScholarPubMed
Le Bihan, D. (2003) Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience 4, 469480.Google Scholar
Lee, D.J., Chen, Y. and Schlaug, G. (2003) Corpus callosum: musician and gender effects. NeuroReport 14, 205209.CrossRefGoogle ScholarPubMed
Leenen, L.P.H., Meek, J., Posthuma, P.R. and Nieuwenhuys, R. (1985) A detailed morphometrical analysis of the pyramidal tract of the rat. Brain Research 359, 6580.CrossRefGoogle ScholarPubMed
Lobel, U., Sedlacik, J., Gullmar, D., Kaiser, W.A., Reichenbach, J.R. and Mentzel, H.J. (2009) Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51, 253263.CrossRefGoogle ScholarPubMed
Lucas Keene, M.F. and Hewer, E.E. (1931) Some observations on myelination in the human central nervous system. Journal of Anatomy 66, 113.Google Scholar
Madison, G., Forsman, L., Blom, Ö., Karabanov, A. and Ullén, F. (2009) Correlations between general intelligence and components of serial timing variability. Intelligence 37, 6875.CrossRefGoogle Scholar
Markham, J.A. and Greenough, W.T. (2004) Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biology 1, 351363.CrossRefGoogle ScholarPubMed
Marsh, R., Gerber, A.J. and Peterson, B.S. (2008) Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry 47, 12331251.CrossRefGoogle ScholarPubMed
Martin, E., Kikinis, R., Zuerrer, M., Boesch, C., Briner, J., Kewitz, G. et al. (1988) Developmental stages of human brain: an MR study. Journal of Computer Assisted Tomography 12, 917922.CrossRefGoogle Scholar
McGraw, P., Liang, L.X. and Provenzale, J.M. (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. American Journal of Roentgenology 179, 15151522.CrossRefGoogle ScholarPubMed
Michailov, G.V., Sereda, M.W., Brinkmann, B.G., Fischer, T.M., Haug, B., Birchmeier, C. et al. (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700703.CrossRefGoogle ScholarPubMed
Muetzel, R.L., Collins, P.F., Mueller, B.A., Schissel, A.M., Lim, K.O. and Luciana, M. (2008) The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. NeuroImage 39, 19181925.CrossRefGoogle ScholarPubMed
Nadon, N.L., Crotzer, D.R. and Stewart, J.R. (1995) Embryonic development of central nervous system myelination in a reptilian species, Eumeces fasciatus. Journal of Comparative Neurology 362, 433440.CrossRefGoogle Scholar
Nathan, P.J. and Smith, M.C. (1955) Long descending tracts in man. 1. Review of present knowledge. Brain 78, 249303.CrossRefGoogle Scholar
Niogi, S.N. and McCandliss, B.D. (2005) Left lateralized white matter microstructure accounts for individual differences in reading ability and disability Conference on Advances in Developmental Cognitive Neuroscience. Pergamon-Elsevier Science Ltd, pp. 21782188.Google Scholar
Nunez, J.L., Nelson, J., Pych, J.C., Kim, J.H.Y. and Juraska, J.M. (2000) Myelination in the splenium of the corpus callosum in adult male and female rats. Developmental Brain Research 120, 8790.CrossRefGoogle ScholarPubMed
Olesen, P.J., Nagy, Z., Westerberg, H. and Klingberg, T. (2003) Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research 18, 4857.CrossRefGoogle Scholar
Öztürk, A.H., Tascioglu, B., Aktekin, M., Kurtoglu, Z. and Erden, I. (2002) Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology 29, 2934.Google ScholarPubMed
Paus, T., Collins, D.L., Evans, A.C., Leonard, G., Pike, B. and Zijdenbos, A. (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin 54, 255266.CrossRefGoogle Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D.L., Blumenthal, J., Giedd, J.N. et al. (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283, 19081911.CrossRefGoogle ScholarPubMed
Perrin, J.S., Leonard, G., Perron, M., Pike, G.B., Pitiot, A., Richer, L. et al. (2009) Sex differences in the growth of white matter during adolescence. NeuroImage 45, 10551066.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D.H., Sullivan, E.V., Rawles, J.M., Zipursky, R.B. and Lim, K.O. (1994) A quantitative magnetic-resonance-imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology 51, 874887.CrossRefGoogle ScholarPubMed
Reiss, A.L., Abrams, M.T., Singer, H.S., Ross, J.L. and Denckla, M.B. (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119, 17631774.CrossRefGoogle ScholarPubMed
Schlaug, G., Jäncke, L., Huang, Y., Staiger, J.F. and Steinmetz, H. (1995) Increased corpus callosum size in musicians. Neuropsychologia 33, 10471055.CrossRefGoogle ScholarPubMed
Schmithorst, V.J., Wilke, M., Dardzinski, B.J. and Holland, S.K. (2005) Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping 26, 139147.CrossRefGoogle Scholar
Schweigreiter, R., Roots, B.I., Bandtlow, C.E. and Gould, R.M. (2006) Understanding myelination through studying its evolution. International Review of Neurobiology 73, 219273.CrossRefGoogle ScholarPubMed
Smith, R.S. and Koles, Z.J. (1970) Myelinated nerve fibers: computed effect of myelin thickness on conduction velocity. American Journal of Physiology 219, 12561258.CrossRefGoogle ScholarPubMed
Stanisz, G.J., Kecojevic, A., Bronskill, M.J. and Henkelman, R.M. (1999) Characterizing white matter with magnetization transfer and T-2. Magnetic Resonance in Medicine 42, 11281136.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Stufflebeam, S.M., Witzel, T., Mikulski, S., Hamalainen, M.S., Temereanca, S., Barton, J.J.S. et al. (2008) A non-invasive method to relate the timing of neural activity to white matter microstructural integrity. NeuroImage 42, 710716.CrossRefGoogle ScholarPubMed
Tuch, D.S., Salat, D.H., Wisco, J.J., Zaleta, A.K., Hevelone, N.D. and Rosas, H.D. (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proceedings of the National Academy of Sciences of the U.S.A. 102, 1221212217.CrossRefGoogle ScholarPubMed
Ullén, F., Forsman, L., Blom, Ö., Karabanov, A. and Madison, G. (2008) Intelligence and variability in a simple timing task share neural substrates in the prefrontal white matter. Journal of Neuroscience 28, 42384243.CrossRefGoogle Scholar
van Buchem, M.A., Steens, S.C.A., Vrooman, H.A., Zwinderman, A.H., McGowan, J.C., Rassek, M. et al. (2001) Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: A preliminary study. 7th Scientific Meeting and Exhibition of the International-Society-for-Magnetic-Resonance-in-Medicine. American Society of Neuroradiology, pp. 762766.Google Scholar
van der Knaap, M.S. and Valk, J. (1990) MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31, 459470.CrossRefGoogle ScholarPubMed
Verhaart, W.J.C. (1950) Hypertrophy of pes pedunculi and pyramid as result of degeneration of contralateral corticofugal fiber tracts. Journal of Comparative Neurology 92, 115.CrossRefGoogle Scholar
Wolff, S.D. and Balaban, R.S. (1989) Magnetization transfer contrast (Mtc) and tissue water proton relaxation in vivo. Magnetic Resonance in Medicine 10, 135144.CrossRefGoogle ScholarPubMed
Wozniak, J.R. and Lim, K.O. (2006) Advances in white matter imaging: A review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neuroscience Biobehavioral Review 30, 762774.CrossRefGoogle Scholar
Yakovlev, P.I. and Lecours, A.-R. (1967) The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (ed) Regional Development of the Brain in Early Life. Oxford, UK: Blackwell Scientific Publications, pp. 365.Google Scholar
Zhai, G.H., Lin, W.L., Wilber, K.P., Gerig, G. and Gilmore, J.H. (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229, 673681.CrossRefGoogle Scholar