Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T22:09:54.645Z Has data issue: false hasContentIssue false

Myelin sheaths are formed with proteins that originated in vertebrate lineages

Published online by Cambridge University Press:  08 September 2009

Robert M. Gould*
Affiliation:
Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
Todd Oakley
Affiliation:
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
Jared V. Goldstone
Affiliation:
Biology Department, Woods Hole Oceanographic Institute, Woods Hole, MA 02543, USA
Jason C. Dugas
Affiliation:
Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
Scott T. Brady
Affiliation:
Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
Alexander Gow
Affiliation:
Center for Molecular Medicine and Genetics, Carman and Ann Adams Department of Pediatrics, Department of Neurology, Wayne State University, Detroit, MI 48201, USA
*
Correspondence should be addressed to: R. M. Gould, Department of Anatomy and Cell Biology M/C 512, Room 578, University of Illinois at Chicago, 808 S. Wood Street Chicago, IL 60612, USA email: rmgould@uic.edu

Abstract

All vertebrate nervous systems, except those of agnathans, make extensive use of the myelinated fiber, a structure formed by coordinated interplay between neuronal axons and glial cells. Myelinated fibers, by enhancing the speed and efficiency of nerve cell communication allowed gnathostomes to evolve extensively, forming a broad range of diverse lifestyles in most habitable environments. The axon-covering myelin sheaths are structurally and biochemically novel as they contain high portions of lipid and a few prominent low molecular weight proteins often considered unique to myelin. Here we searched genome and EST databases to identify orthologs and paralogs of the following myelin-related proteins: (1) myelin basic protein (MBP), (2) myelin protein zero (MPZ, formerly P0), (3) proteolipid protein (PLP1, formerly PLP), (4) peripheral myelin protein-2 (PMP2, formerly P2), (5) peripheral myelin protein-22 (PMP22) and (6) stathmin-1 (STMN1). Although widely distributed in gnathostome/vertebrate genomes, neither MBP nor MPZ are present in any of nine invertebrate genomes examined. PLP1, which replaced MPZ in tetrapod CNS myelin sheaths, includes a novel ‘tetrapod-specific’ exon (see also Möbius et al., 2009). Like PLP1, PMP2 first appears in tetrapods and like PLP1 its origins can be traced to invertebrate paralogs. PMP22, with origins in agnathans, and STMN1 with origins in protostomes, existed well before the evolution of gnathostomes. The coordinated appearance of MBP and MPZ with myelin sheaths and of PLP1 with tetrapod CNS myelin suggests interdependence – new proteins giving rise to novel vertebrate structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aricescu, A.R. and Jones, E.Y. (2007) Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Current Opinion in Cell Biology 19, 543550.CrossRefGoogle ScholarPubMed
Avila, R.L., Tevlin, B.R., Lees, J.P., Inouye, H. and Kirschner, D.A. (2007) Myelin structure and composition in zebrafish. Neurochemical Research 32, 197209.CrossRefGoogle ScholarPubMed
Baines, A.J. (2003) Comprehensive analysis of all triple helical repeats in beta-spectrins reveals patterns of selective evolutionary conservation. Cell and Molecular Biology Letters 8, 195214.Google ScholarPubMed
Banerjee, S., Pillai, A.M., Paik, R., Li, J. and Bhat, M.A. (2006) Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila. Journal of Neuroscience 26, 33193329.CrossRefGoogle ScholarPubMed
Birchmeier, C. and Nave, K.A. (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56, 14911497.CrossRefGoogle ScholarPubMed
Bizzozero, O.A., Fridal, K. and Pastuszyn, A. (1994) Identification of the palmitoylation site in rat myelin P 0 glycoprotein. Journal of Neurochemistry 62, 11631171.CrossRefGoogle Scholar
Boggs, J.M. (2006) Myelin basic protein: a multifunctional protein. Cellular and Molecular Life Sciences 63, 19451961.CrossRefGoogle ScholarPubMed
Boggs, J.M., Rangaraj, G., Koshy, K.M. and Mueller, J.P. (2000) Adhesion of acidic lipid vesicles by 21.5 kDa (recombinant) and 18.5 kDa isoforms of myelin basic protein. Biochimica et Biophysica Acta: Bio-Membranes 1463, 8187.CrossRefGoogle ScholarPubMed
Brösamle, C. (2009) The myelin proteolipid DMalpha in fishes. Neuron Glia BiologyGoogle ScholarPubMed
Brösamle, C. and Halpern, M.E. (2002) Characterization of myelination in the developing zebrafish. Glia 39, 4757.CrossRefGoogle ScholarPubMed
Brown, E.R. and Abbott, N.J. (1993) Ultrastructure and permeability of the Schwann cell layer surrounding the giant axon of the squid. Journal of Neurocytology 22, 283298.CrossRefGoogle ScholarPubMed
Bullock, T.H., Moore, J.K. and Fields, R.D. (1984) Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neuroscience Letters 48, 145148.CrossRefGoogle ScholarPubMed
Buttmann, M., Nowak, E., Kroner, A., Hemmer, B., Lesch, K.P. and Rieckmann, P. (2008) Analysis of the Stathmin rs182455 single nucleotide promoter polymorphism in patients with multiple sclerosis. Journal of Neurogenetics, 22, 181186.CrossRefGoogle ScholarPubMed
Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S. et al. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. Journal of Neuroscience 28, 264278.CrossRefGoogle Scholar
Chopra, S.S., Watanabe, H., Zhong, T.P. and Roden, D.M. (2007) Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates. BMC Evolutionary Biology 7, 113.CrossRefGoogle ScholarPubMed
D'Antonio, M., Michalovich, D., Paterson, M., Droggiti, A., Woodhoo, A., Mirsky, R. et al. (2006) Gene profiling and bioinformatic analysis of Schwann cell embryonic development and myelination. Glia 53, 501515.CrossRefGoogle ScholarPubMed
Dietrich, U., Kruger, P., Gutberlet, T. and Kas, J.A. (2009) Interaction of the MARCKS peptide with PIP(2) in phospholipid monolayers. Biochimica et Biophysica Acta 1788, 14741481.CrossRefGoogle Scholar
Ding, Y. and Brunden, K.R. (1994) The cytoplasmic domain of myelin glycoprotein P 0 interacts with negatively charged phospholipid bilayers. Journal of Biological Chemistry 269, 1076410770.CrossRefGoogle Scholar
Dugas, J.C., Tai, Y.C., Speed, T.P., Ngai, J. and Barres, B.A. (2006) Functional genomic analysis of oligodendrocyte differentiation. Journal of Neuroscience 26, 1096710983.CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.CrossRefGoogle ScholarPubMed
Epand, R.M. (2006) Cholesterol and the interaction of proteins with membrane domains. Progress in Lipid Research 45, 279294.CrossRefGoogle ScholarPubMed
Fein, A.J., Meadows, L.S., Chen, C., Slat, E.A. and Isom, L.L. (2007) Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant. BMC Genomics 8, 226.CrossRefGoogle ScholarPubMed
Feta, A., Do, A.T., Rentzsch, F., Technau, U. and Kusche-Gullberg, M. (2009) Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis. Biochemistry Journal 419, 585593.CrossRefGoogle ScholarPubMed
Fitzner, D., Schneider, A., Kippert, A., Mobius, W., Willig, K.I., Hell, S.W. et al. (2006) Myelin basic protein-dependent plasma membrane reorganization in the formation of myelin. EMBO Journal 25, 50375048.CrossRefGoogle ScholarPubMed
Gaboreanu, A.M., Hrstka, R., Xu, W., Shy, M., Kamholz, J., Lilien, J. et al. (2007) Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKC alpha. Journal of Cell Biology 177, 707716.CrossRefGoogle ScholarPubMed
Gao, Y., Li, W.H. and Filbin, M.T. (2000) Acylation of myelin Po protein is required for adhesion. Journal of Neuroscience Research 60, 704713.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Garbern, J.Y. (2007) Pelizaeus–Merzbacher disease: genetic and cellular pathogenesis. Cellular and Molecular Life Sciences 64, 5065.CrossRefGoogle ScholarPubMed
Garrido, J.J., Giraud, P., Carlier, E., Fernandes, F., Moussif, A., Fache, M.P. et al. (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300, 20912094.CrossRefGoogle ScholarPubMed
Georgiou, J. and Charlton, M.P. (1999) Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein. Glia 27, 101109.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Givogri, M.I., Bongarzone, E.R., Schonmann, V. and Campagnoni, A.T. (2001) Expression and regulation of golli products of myelin basic protein gene during in vitro development of oligodendrocytes. Journal of Neuroscience Research 66, 679690.CrossRefGoogle ScholarPubMed
Gould, R.M., Morrison, H.G., Gilland, E. and Campbell, R.K. (2005) Myelin tetraspan family proteins but no non-tetraspan family proteins are present in the ascidian (Ciona intestinalis) genome. Biological Bulletin 209, 4966.CrossRefGoogle ScholarPubMed
Gow, A. (1997) Redefining the lipophilin family of proteolipid proteins. Journal of Neuroscience Research 50, 659664.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Harauz, G., Ishiyama, N., Hill, C.M., Bates, I.R., Libich, D.S. and Fares, C. (2004) Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35, 503542.CrossRefGoogle ScholarPubMed
Harauz, G. and Libich, D.S. (2009) The classic basic protein of myelin – conserved structural motifs and the dynamic molecular barcode involved in membrane adhesion and protein–protein interactions. Current Protein and Peptide Science 10, 196215.CrossRefGoogle ScholarPubMed
Hartline, D.K. (2009) What is myelin? Neuron Glia BiologyGoogle Scholar
Hill, A.S., Nishino, A., Nakajo, K., Zhang, G., Fineman, J.R., Selzer, M.E. et al. (2008) Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. PLoS Genetics 4, e1000317.CrossRefGoogle ScholarPubMed
Hill, C.M., Libich, D.S. and Harauz, G. (2005) Assembly of tubulin by classic myelin basic protein isoforms and regulation by post-translational modification. Biochemistry 44, 1667216683.CrossRefGoogle ScholarPubMed
Hortsch, M. (2000) Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Molecular and Cellular Neuroscience 15, 110.CrossRefGoogle ScholarPubMed
Inagaki, M., Nakata, T. and Higuchi, R. (2006) Isolation and structure of a galactocerebroside molecular species from the starfish Culcita novaeguineae. Chemical and Pharmaceutical Bulletin (Tokyo) 54, 260261.CrossRefGoogle ScholarPubMed
Jeserich, G., Klempahn, K. and Pfeiffer, M. (2008) Features and functions of oligodendrocytes and myelin proteins of lower vertebrate species. Journal of Molecular Neuroscience 35, 117126.CrossRefGoogle ScholarPubMed
Jessen, K.R. and Mirsky, R. (2005) The origin and development of glial cells in peripheral nerves. Nature Reviews Neuroscience 6, 671682.CrossRefGoogle ScholarPubMed
Kim, J., Zhang, R., Strittmatter, E.F., Smith, R.D. and Zand, R. (2009) Post-translational modifications of chicken myelin basic protein charge components. Neurochemistry Research 34, 360372.CrossRefGoogle ScholarPubMed
Kimura, M., Sato, M., Akatsuka, A., Nozawa-Kimura, S., Takahashi, R., Yokoyama, M. et al. (1989) Restoration of myelin formation by a single type of myelin basic protein in transgenic shiverer mice. Proceedings of the National Academy of Sciences of the U.S.A. 86, 56615665.CrossRefGoogle ScholarPubMed
Kimura, M., Sato, M., Akatsuka, A., Saito, S., Ando, K., Yokoyama, M. et al. (1998) Overexpression of a minor component of myelin basic protein isoform (17.2 kDa) can restore myelinogenesis in transgenic shiverer mice. Brain Research 785, 245252.CrossRefGoogle ScholarPubMed
Kirschner, D.A. and Ganser, A.L. (1980) Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283, 207210.CrossRefGoogle ScholarPubMed
Kirschner, D.A., Wrabetz, L., Feltri, M.L., Lazzarini, R.A., Griffin, J.W., Lassmann, H. et al. (2004) The P0 gene, Myelin Biology and Disorders. San Diego, CA: Elsevier Academic Press, pp. 523545.Google Scholar
Kishimoto, Y. (1986) Phylogenetic development of myelin glycosphingolipids. Chemistry and Physics of Lipids 42, 117128.CrossRefGoogle ScholarPubMed
Kitagawa, K., Sinoway, M.P., Yang, C., Gould, R.M. and Colman, D.R. (1993) A proteolipid protein gene family: expression in sharks and rays and possible evolution from an ancestral gene encoding a pore-forming polypeptide. Neuron 11, 433448.CrossRefGoogle ScholarPubMed
Konde, V. and Eichberg, J. (2006) Myelin protein zero: mutations in the cytoplasmic domain interfere with its cellular trafficking. Journal of Neuroscience Research 83, 957964.CrossRefGoogle ScholarPubMed
Kucenas, S., Snell, H. and Appel, B. (2009) nkx2.2a promotes specification and differentiation of a myelinating subset of oligodendrocyte lineage cells in zebrafish. Neuron Glia Biology.Google Scholar
Lee, M.J., Brennan, A., Blanchard, A., Zoidl, G., Dong, Z., Tabernero, A. et al. (1997) P 0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Molecular and Cellular Neuroscience 8, 336350.CrossRefGoogle Scholar
Lemke, G. and Axel, R. (1985) Isolation and sequence of a major cDNA encoding the major structural protein of peripheral nerve. Cell 40, 501508.CrossRefGoogle Scholar
Li, H. and Richardson, W.D. (2009) The evolution of Olig genes and their roles in myelination. Neuron Glia Biology.Google Scholar
Liu, A., Muggironi, M., Marin-Husstege, M. and Casaccia-Bonnefil, P. (2003) Oligodendrocyte process outgrowth in vitro is modulated by epigenetic regulation of cytoskeletal severing proteins. Glia 44, 264274.CrossRefGoogle ScholarPubMed
Luo, X., Cerullo, J., Dawli, T., Priest, C., Haddadin, Z., Kim, A. et al. (2008) Peripheral myelin of Xenopus laevis: role of electrostatic and hydrophobic interactions in membrane compaction. Journal of Structural Biology 162, 170183.CrossRefGoogle ScholarPubMed
Luo, X., Inouye, H., Gross, A.A., Hidalgo, M.M., Sharma, D., Lee, D. et al. (2007) Cytoplasmic domain of zebrafish myelin protein zero: adhesive role depends on beta-conformation. Biophysics Journal 93, 35153528.CrossRefGoogle ScholarPubMed
Lykidis, A. (2007) Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Progress in Lipid Research 46, 171199.CrossRefGoogle ScholarPubMed
Lyons, D.A., Pogoda, H.M., Voas, M.G., Woods, I.G., Diamond, B., Nix, R. et al. (2005) erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Current Biology 15, 513524.CrossRefGoogle ScholarPubMed
Martini, R., Mohajeri, M.H., Kasper, S., Giese, K.P. and Schachner, M. (1995) Mice doubly deficient in the genes for P0 and myelin basic protein show that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. Journal of Neuroscience 15, 44884495.CrossRefGoogle Scholar
Michell, R.H. (2008) Inositol derivatives: evolution and functions. Nature Reviews. Molecular Cell Biology 9, 151161.Google Scholar
Milne, T.J., Atkins, A.R., Warren, J.A., Auton, W.P. and Smith, R. (1990) Shark myelin basic protein: amino acid sequence, secondary structure, and self-association. Journal of Neurochemistry 55, 950955.CrossRefGoogle ScholarPubMed
Möbius, W., Patzig, J., Nave, K.-A. and Werner, H.B. (2009) Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biology.Google Scholar
Musse, A.A., Gao, W., Rangaraj, G., Boggs, J.M. and Harauz, G. (2009) Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neuroscience Letters 450, 3236.CrossRefGoogle ScholarPubMed
Nawaz, S., Kippert, A., Saab, A.S., Werner, H.B., Lang, T., Nave, K.A. et al. (2009) Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. Journal of Neuroscience 29, 47944807.CrossRefGoogle ScholarPubMed
Nielsen, J.A., Maric, D., Lau, P., Barker, J.L. and Hudson, L.D. (2006) Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. Journal of Neuroscience 26, 98819891.CrossRefGoogle ScholarPubMed
Ogawa, Y. and Rasband, M.N. (2009) Proteomic analysis of optic nerve lipid rafts reveals new paranodal proteins. Journal of Neuroscience Research (in press).CrossRefGoogle ScholarPubMed
Page, R.D. (2002) Visualizing phylogenetic trees using TreeView. Current Protocols in Bioinformatics, Unit 6.2.Google ScholarPubMed
Pan, Z., Kao, T., Horvath, Z., Lemos, J., Sul, J.Y., Cranstoun, S.D. et al. (2006) A common ankyrin-G-based mechanism retains KCNQ and nav channels at electrically active domains of the axon. Journal of Neuroscience 26, 25992613.CrossRefGoogle ScholarPubMed
Plotkowski, M.L., Kim, S., Phillips, M.L., Partridge, A.W., Deber, C.M. and Bowie, J.U. (2007) Transmembrane domain of myelin protein zero can form dimers: possible implications for myelin construction. Biochemistry 46, 1216412173.CrossRefGoogle ScholarPubMed
Poliak, S. and Peles, E. (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews. Neuroscience 4, 968980.Google Scholar
Polverini, E., Boggs, J.M., Bates, I.R., Harauz, G. and Cavatorta, P. (2004) Electron paramagnetic resonance spectroscopy and molecular modelling of the interaction of myelin basic protein (MBP) with calmodulin (CaM)-diversity and conformational adaptability of MBP CaM-targets. Journal of Structural Biology 148, 353369.CrossRefGoogle ScholarPubMed
Privat, A., Jacque, C., Bourre, J.M., Dupouey, P. and Baumann, N. (1979) Absence of the major dense line in myelin of the mutant mouse shiverer. Neuroscience Letters 12, 107112.CrossRefGoogle ScholarPubMed
Quarles, R.H., Macklin, W.B., Morell, P., Siegel, G.J., Albers, R.W., Brady, S.T. et al. (2006) Myelin Formation, Structure and Biochemistry, Basic Neurochemistry. Amsterdam: Academic Press, pp. 5171.Google Scholar
Ravelli, R.B., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A. et al. (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198202.CrossRefGoogle Scholar
Richter-Landsberg, C. (2008) The cytoskeleton in oligodendrocytes. Microtubule dynamics in health and disease. Journal of Molecular Neuroscience 35, 5563.CrossRefGoogle ScholarPubMed
Rosenbluth, J. (1980) Peripheral nerve in the mouse mutant shiverer. Journal of Comparative Neurology 193, 729739.CrossRefGoogle ScholarPubMed
Roth, A.D., Ivanova, A. and Colman, D.R. (2006) New observations on the compact myelin proteome. Neuron Glia Biology 2, 1521.CrossRefGoogle ScholarPubMed
Roth, G.A., Gonzalez, M.D., Monferran, C.G., De Santis, M.L. and Cumar, F.A. (1993) Myelin basic protein domains involved in the interaction with actin. Neurochemistry International 23, 459465.CrossRefGoogle ScholarPubMed
Roots, B.I. (2009) The phylogeny of invertebrates and the evolution of myelin. Neuron Glia Biology.Google Scholar
Saavedra, R.A., Fors, L., Aebersold, R.H., Arden, B., Horvath, S., Sanders, J. et al. (1989) The myelin proteins of the shark brain are similar to the myelin proteins of the mammalian peripheral nervous system. Journal of Molecular Evolution 29, 149156.CrossRefGoogle Scholar
Saher, G., Quintes, S., Mobius, W., Wehr, M.C., Kramer-Albers, E.M., Brugger, B. et al. (2009) Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. Journal of Neuroscience 29, 60946104.CrossRefGoogle ScholarPubMed
Salzer, J.L. (2003) Polarized domains of myelinated axons. Neuron 40, 297318.CrossRefGoogle ScholarPubMed
Schmidt, E.E. and Davies, C.J. (2007) The origins of polypeptide domains. BioEssays 29, 262270.CrossRefGoogle ScholarPubMed
Schweigreiter, R., Roots, B.I., Bandtlow, C.E. and Gould, R.M. (2006) Understanding myelination through studying its evolution. International Review of Neurobiology 73, 219273.CrossRefGoogle ScholarPubMed
Schweitzer, J., Becker, T., Schachner, M., Nave, K.A. and Werner, H. (2006) Evolution of myelin proteolipid proteins: Gene duplication in teleosts and expression pattern divergence. Molecular and Cellular Neuroscience 31, 161177.CrossRefGoogle ScholarPubMed
Sedzik, J. and Kirschner, D.A. (1992) Is myelin basic protein crystallizable. Neurochemical Research 17, 157166.CrossRefGoogle ScholarPubMed
Shapiro, L., Doyle, J.P., Hensley, P., Colman, D.R. and Hendrickson, W.A. (1996) Crystal structure of the extracellular domain from P 0, the major structural protein of peripheral nerve myelin. Neuron 17, 435449.CrossRefGoogle Scholar
Shapiro, L., Love, J. and Colman, D.R. (2007) Adhesion molecules in the nervous system: structural insights into function and diversity. Annual Review of Neuroscience 30, 451474.CrossRefGoogle ScholarPubMed
Shy, M.E. (2006) Peripheral neuropathies caused by mutations in the myelin protein zero. Journal of Neurological Science 242, 5566.CrossRefGoogle ScholarPubMed
Simons, M., Krämer, E.M., Thiele, C., Stoffel, W. and Trotter, J. (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. Journal of Cell Biology 151, 143153.CrossRefGoogle ScholarPubMed
Southwood, C., Olson, K., Wu, C.Y. and Gow, A. (2007a) Novel alternatively spliced endoplasmic reticulum retention signal in the cytoplasmic loop of proteolipid protein-1. Journal of Neuroscience Research 85, 471478.CrossRefGoogle ScholarPubMed
Southwood, C.M., Peppi, M., Dryden, S., Tainsky, M.A. and Gow, A. (2007b) Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochemical Research 32, 187195.CrossRefGoogle ScholarPubMed
Sporkel, O., Uschkureit, T., Bussow, H. and Stoffel, W. (2002) Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37, 1930.CrossRefGoogle ScholarPubMed
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.CrossRefGoogle ScholarPubMed
Stecca, B., Southwood, C.M., Gragerov, A., Kelley, K.A., Friedrich, V.L. Jr., and Gow, A. (2000) The evolution of lipophilin genes from invertebrates to tetrapods: DM20 cannot replace proteolipid protein in CNS myelin. Journal of Neuroscience 20, 40024010.CrossRefGoogle ScholarPubMed
Susuki, K. and Rasband, M.N. (2008) Molecular mechanisms of node of Ranvier formation. Current Opinion in Cell Biology 20, 616623.CrossRefGoogle ScholarPubMed
Taylor, C.M., Marta, C.B., Claycomb, R.J., Han, D.K., Rasband, M.N., Coetzee, T. et al. (2004) Proteomic mapping provides powerful insights into functional myelin biology. Proceedings of the National Academy of Sciences of the U.S.A. 101, 46434648.CrossRefGoogle ScholarPubMed
Trapp, B.D., Dubois-Dalcq, M. and Quarles, R.H. (1984) Ultrastructural localization of P 2 protein in actively myelinating Schwann cells. Journal of Neurochemistry 43, 944948.CrossRefGoogle Scholar
Trapp, B.D. and Quarles, R.H. (1984) Immunocytochemical localization of the myelin-associated glycoprotein – fact or artifact? Journal of Neuroimmunology 6, 231249.CrossRefGoogle ScholarPubMed
Verheijen, M.H.G., Chrast, R., Burrola, P. and Lemke, G. (2003) Local regulation of fat metabolism in peripheral nerves. Genes and Development 17, 24502464.CrossRefGoogle ScholarPubMed
Waehneldt, T.V. (1990) Phylogeny of myelin proteins. Annals of the New York Academy of Sciences 605, 1528.CrossRefGoogle ScholarPubMed
Waehneldt, T.V., Matthieu, J.M. and Jeserich, G. (1986) Appearance of myelin proteins during vertebrate evolution. Neurochem. Int. 9, 463474.CrossRefGoogle ScholarPubMed
Werner, H.B., Kuhlmann, K., Shen, S., Uecker, M., Schardt, A., Dimova, K. et al. (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. Journal of Neuroscience 27, 77177730.CrossRefGoogle ScholarPubMed
Williams, A.F. and Barclay, A.N. (1988) The immunoglobulin superfamily-domains for cell surface recognition. Annual Review of Immunology 6, 381405.CrossRefGoogle ScholarPubMed
Yamamori, C., Terashima, M., Ishino, H. and Shimoyama, M. (1995) ADP-ribosylation of myelin basic protein and inhibition of phospholipid vesicle aggregation. Enzyme and Protein 48, 202212.CrossRefGoogle Scholar
Zalc, B., Goujet, D. and Colman, D. (2008) The origin of the myelination program in vertebrates. Current Biology 18, R511R512.CrossRefGoogle ScholarPubMed
Zand, R., Jin, X., Kim, J., Wall, D.B., Gould, R. and Lubman, D.M. (2001) Studies of posttranslational modifications in spiny dogfish myelin basic protein. Neurochemistry Research 26, 539547.CrossRefGoogle ScholarPubMed
Zhou, L., Li, C.J., Wang, Y., Xia, W., Yao, B., Jin, J.Y. et al. (2007) Identification and characterization of a MBP isoform specific to hypothalamus in orange-spotted grouper (Epinephelus coioides). Journal of Chemical Neuroanatomy 34, 4759.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Gould supplementary material

Supplementary figs and table

Download Gould supplementary material(PDF)
PDF 364.8 KB