No CrossRef data available.
Published online by Cambridge University Press: 01 September 1998
Eucalyptus coccifera Hook., a plant capable of forming both arbuscular mycorrhizas and ectomycorrhizas, was used to compare the effects of the two mycorrhizal types on phosphorus uptake and C allocation. Seedlings were grown in a P-deficient soil/sand mixture inoculated with peat/vermiculite spawn of Laccaria bicolor (Maire) Orton or Thelephora terrestris (Ehrh.) Fr.; or with 250-μm sievings from leek colonized by Glomus caledonium (Nicol. & Gerd.) Trappe & Gerde., Glomus sp. type E3 or Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe or with autoclaved spawn (non-mycorrhizal control). Before the 89-d harvest, a subset of the harvested plants was labelled with 14C (45–60-min pulse, 202-h chase). Growth promotion and the increase in seedling P content was largest in the two ectomycorrhizal treatments. Production of fluorescein diacetate-stained external hyphae was three to seven times higher by ectomycorrhizal (ECM) fungi compared with arbuscular mycorrhizal (AM) fungi and was highly correlated with P uptake and shoot weight. Phosphorus inflow rates of ECM and AM seedlings were 3·8 times, and 2·0–2·7 times those of non-mycorrhizal seedlings. Phosphorus acquisition efficiencies were similar (11·2 and 10·0 μmol P mmol−1C for T. terrestris and Glomus E3 plants, respectively) for the two mycorrhizal types, and appeared to be greater than in uninoculated plants (7.2 μmol P mmol−1C) grown at the same P level.