Published online by Cambridge University Press: 01 May 1998
Dr Willem Asman concluded that the major global sources of atmospheric NH3 are excreta from domestic animals and fertilizers. A question raised was: how reliable are the emission estimates and extrapolations? The answer was that emission estimates are surrounded by uncertainty, which is a major handicap to sound modelling of NH3 dry deposition and, consequently, to obtaining good estimates of critical load exceedences.
Major uncertainties in emission estimates seem to be related to the use of simple emission factors, many of which are highly empirical or have been derived from measurements carried out under conditions which deviate considerably from those following modern practices of handling and applying manure and fertilizers. An example is provided by the commonly used emission factors for synthetic fertilizers (see e.g. Bouwman et al. (1997)), which are much higher than recent micrometeorological assessments seem to suggest. Thus, emission from urea, the most widespread fertilizer used in the world (currently around 55% of world N consumption) can be completely avoided if the fertilizer is incorporated into the upper soil layers. Similarly, a growing crop can reduce losses to well below 10% of the applied amount of urea-N, i.e. to less than half of the generally used emission factors of 15% for Europe and 25% for the tropics. The emission factor for NPK-fertilizer is set at 4%, whereas that for pure calcium-ammonium-nitrate, the same N compound as is present in NPK-fertilizers, is assumed to be only 2%.