Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T04:50:01.064Z Has data issue: false hasContentIssue false

Global patterns of root turnover for terrestrial ecosystems

Published online by Cambridge University Press:  01 July 2000

RICHARD A. GILL
Affiliation:
Duke University, Department of Botany, Box 90340, Durham, NC 27708, USA
ROBERT B. JACKSON
Affiliation:
Duke University, Department of Botany, Box 90340, Durham, NC 27708, USA
Get access

Abstract

Root turnover is a critical component of ecosystem nutrient dynamics and carbon sequestration and is also an important sink for plant primary productivity. We tested global controls on root turnover across climatic gradients and for plant functional groups by using a database of 190 published studies. Root turnover rates increased exponentially with mean annual temperature for fine roots of grasslands (r2 = 0.48) and forests (r2 = 0.17) and for total root biomass in shrublands (r2 = 0.55). On the basis of the best-fit exponential model, the Q10 for root turnover was 1.4 for forest small diameter roots (5 mm or less), 1.6 for grassland fine roots, and 1.9 for shrublands. Surprisingly, after accounting for temperature, there was no such global relationship between precipitation and root turnover. The slowest average turnover rates were observed for entire tree root systems (10% annually), followed by 34% for shrubland total roots, 53% for grassland fine roots, 55% for wetland fine roots, and 56% for forest fine roots. Root turnover decreased from tropical to high-latitude systems for all plant functional groups. To test whether global relationships can be used to predict interannual variability in root turnover, we evaluated 14 yr of published root turnover data from a shortgrass steppe site in northeastern Colorado, USA. At this site there was no correlation between interannual variability in mean annual temperature and root turnover. Rather, turnover was positively correlated with the ratio of growing season precipitation and maximum monthly temperature (r2 = 0.61). We conclude that there are global patterns in rates of root turnover between plant groups and across climatic gradients but that these patterns cannot always be used for the successful prediction of the relationship of root turnover to climate change at a particular site.

Type
Research article
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)