No CrossRef data available.
Article contents
Mixed Spectral and Pseudospectral Methods for a Nonlinear Strongly Damped Wave Equation in an Exterior Domain
Published online by Cambridge University Press: 28 May 2015
Abstract
The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc, using Fourier and generalized Laguerre functions. As an example, we consider a nonlinear strongly damped wave equation. The mixed spectral and pseudospectral schemes are proposed. The convergence is proved. Numerical results demonstrate the efficiency of this approach.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 4 , Issue 2 , May 2011 , pp. 255 - 282
- Copyright
- Copyright © Global Science Press Limited 2011
References
[1]Bergh, J. and Löfström, J., Interpolation Spaces, An Introduction, Spring-Verlag, Berlin, 1976.CrossRefGoogle Scholar
[2]Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods, Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.CrossRefGoogle Scholar
[3]Funaro, D., Polynomial Approxiamtions of Differential Equations, Springer-Verlag, Berlin, 1992.CrossRefGoogle Scholar
[4]Guo, B.-Y., Error estimation of Hermite spectral method for nonlinear partial differential equations, Math. Comp., 68 (1999), pp. 1067–1078.CrossRefGoogle Scholar
[5]Guo, B.-Y., Spectral Methods and Their Applications, World Scientific, Singapore, 1998.CrossRefGoogle Scholar
[6]Guo, B.-Y. and Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86 (2000), pp. 635–654.CrossRefGoogle Scholar
[7]Guo, B.-Y., Shen, J. and Xu, C.-L., Generalized Laguerre approximation and its applations to exterior problems, J. Comp. Math., 23 (2005), pp. 113–130.Google Scholar
[8]Guo, B.-Y., Wang, L.-L. and Wang, Z.-Q., Generalized Laguerre interpolation and pseudospectral method for unbound domains, SIAM J. Numer. Anal, 43 (2006), pp. 2567–2589.Google Scholar
[9]Guo, B.-Y. and Zhang, X.-Y., A new generalized Laguerre interpolation and its applications, J. Comp. Appl. Math., 181 (2005), pp. 342–363.Google Scholar
[10]Guo, B.-Y. and Zhang, X.-Y., Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions, Appl. Numer. Math., 57 (2007), pp. 455–471.CrossRefGoogle Scholar
[11]Ikehata, R., Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains, Math. Meth. Appl. Sci., 24 (2001), pp. 659–670.CrossRefGoogle Scholar
[12]Maday, Y., Pernaud-Thomas, B. and Vandeven, H., Une réehabilitation des méthodes spéctrales de type Laguerre, Rech. Aerospat., 6 (1985), pp. 353–379.Google Scholar
[13]Mastroianni, G. and Monegato, G., Nyström interpolants based on zeros of Laguerre polynomials for some Wiener-Hopf equations, IMA J. Numer. Anal., 17 (1997), pp. 621–642.CrossRefGoogle Scholar
[14]Mastroanni, G. and Occorsio, D., Lagrange interpolation at Laguerre zeros in some weighted uniform spaces, Acta Math. Hungar, 91 (2001), pp. 27–52.CrossRefGoogle Scholar
[15]Pata, V. and Zelik, S., Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), pp. 1495–1506.CrossRefGoogle Scholar
[16]Wang, Z.-Q., Guo, B.-Y. and Wu, Y.-N., Pseudospectral method using generalized Laguerre functions for singular problem on unbounded domains, Disc. Cont. Dyn. Sys. B, 11 (2009), pp. 1019–1038.Google Scholar
[17]Wang, Z.-Q., Guo, B.-Y. and Zhang, W., Mixed spectral method for three-dimensional exterior problems using spherical harmonic and generalized Laguerre functions, J. Comp. Appl. Math., 217 (2008), pp. 277–298.CrossRefGoogle Scholar
[18]Zhang, R., Wang, Z.-Q. and Guo, B.-Y., Mixed Fourier-Laguerre spectral and pseudospectral methods for exterior problems using generalized Laguerre functions, J. Sci. Comp., 36 (2008), pp. 263–283.CrossRefGoogle Scholar
[19]Zhang, X.-Y. and Guo, B.-Y., Spherical harmonic-generalized Laguerre spectral method for exterior problems, J. Sci. Comp., 27 (2006), pp. 523–537.Google Scholar