No CrossRef data available.
Article contents
Residual Based A Posteriori Error Estimates for Convex Optimal Control Problems Governed by Stokes-Darcy Equations
Published online by Cambridge University Press: 28 May 2015
Abstract
In this paper, we derive a posteriori error estimates for finite element approximations of the optimal control problems governed by the Stokes-Darcy system. We obtain a posteriori error estimators for both the state and the control based on the residual of the finite element approximation. It is proved that the a posteriori error estimate provided in this paper is both reliable and efficient.
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 5 , Issue 4 , November 2012 , pp. 602 - 634
- Copyright
- Copyright © Global Science Press Limited 2012
References
[1]Abergel, F. and Teman, T., On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), pp. 305–325.CrossRefGoogle Scholar
[2]Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.CrossRefGoogle Scholar
[3]Liu, W. and Yan, N., A posteriori error estimates for the control problems governed by stokes equations, SIAM J. Numer. Anal., 40 (2002), pp. 1850–1869.CrossRefGoogle Scholar
[4]Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, Springer-Verlag, 1994.CrossRefGoogle Scholar
[5]Chen, W., Chen, P., Gunzburger, Max and Yan, N., Superconvergence analysis of FEMs for the Stokes-Darcy system, Math. Meth. Appl. Sci., 33 (2010), pp. 1605–1617.CrossRefGoogle Scholar
[6]Chen, Z., Finite Element Methods and Their Applications, Berlin Heidelberg Springer-Verlag, 2005.Google Scholar
[7]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.Google Scholar
[8]Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S., Optimization with PDE constraints, Mathematical Modelling: Theory and Applications, Volume 23, Springer, 2008.Google Scholar
[9]Liu, W. and Yan, N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.Google Scholar
[10]Neittaanmaki, P. and Tiba, D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Marcel Dekker, New York, 1994.Google Scholar
[11]Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984.CrossRefGoogle Scholar
[12]Babuška, I. and Vogelius, M., Feedback and adaptive finite element solution of one-dimensional boundary value problems, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.Google Scholar
[13]Bieterman, M. and Babuška, I., The finite element method for parabolic equations: (I) a posteriori estimation, Numer. Math., 40 (1982), pp. 339–371.CrossRefGoogle Scholar
[14]Babuška, I. and Rheinbold, C., Error estimates for adaptive finite element computations, Numer. Math., 44 (1984), pp. 75–102.Google Scholar
[15]Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, 2000.CrossRefGoogle Scholar
[16]Verfürth, R., A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Teubner 1996.Google Scholar
[17]Verfürth, R., A posteriori error estimators for the Stokes equations, Numer. Math., 55 (1989), pp. 309–325.CrossRefGoogle Scholar
[18]Babuška, I. and Gatica, G. N., A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48 (2010), pp. 498–522.CrossRefGoogle Scholar
[19]Cui, M. and Yan, N., A posteriori error estimate for the Stokes-Darcy system, Mathematical Methods in the Applied Science, 34 (2011), pp. 1050–1064.CrossRefGoogle Scholar
[20]Liu, W. and Yan, N., A posteriori error estimates for distributed convex optimal control problems, Adv. Comp. Math., 15 (2001), pp. 285–309.Google Scholar
[21]Becker, R., Estimating the control error in discretized PDE-constrained optimization, J. Numer. Math., 14 (2006), pp. 163–185.CrossRefGoogle Scholar
[22]Li, R., Liu, W., Ma, H. and Tang, T., Adaptive finite element approximations of elliptic optimal control, SIAM J. Control Optim., 41 (2002), pp. 1321–1349.CrossRefGoogle Scholar
[23]Hintermüller, M., Hoppe, R. H. W., Iliash, Y. and Kieweg, M., An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM: Control, Optimisation and Calculus of Variations (COCV), 14 (2008), pp. 540–560.Google Scholar
[24]Liu, H. and Yan, N., Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, Journal of Computational and Applied Mathematics, 209 (2007), pp. 187–207.CrossRefGoogle Scholar
[25]Becker, R. and Rannacher, R., An optimal control approach to a-posteriori error estimation in finite element methods, Acta Numerica (Iserles, A. ed), Cambridge University Press (2001), pp. 1–102.Google Scholar
[26]Hintermüller, M. and Hoppe, R. H. W., Goal-oriented adaptivity in control constrained optimal control of partial differential equations, SIAM J. Control Optim., 47 (2008), pp. 1721–1743.CrossRefGoogle Scholar
[27] H.-Niu, F. and Yang, D.-P., Finite Element Analysis of Optimal Control Problem Governed by Stokes Equations with L2-Norm State-Constraints, J. Comp. Math., 29 (2011), pp. 589–604.Google Scholar
[28]Vexler, B. and Wollner, W., Adaptive finite elements for elliptic optimization problems with control constraints, SIAM J. Control Optim., 47 (2008), pp. 509–534.CrossRefGoogle Scholar
[29]Jäger, W. and Mikelic, A., On the interface boundary condition of Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), pp. 1111–1127.Google Scholar
[30]Layton, W. J., Schieweck, F. and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Appl. Math., 40 (2003), pp. 2195–2218.Google Scholar
[31]Glowinski, R. and He, Q.-L., A least-squares/fictitious domain method for linear elliptic problems with Robin boundary conditions, Commun. Comput. Phys., 9 (2011), pp. 587–606CrossRefGoogle Scholar
[32]Girault, V. and Raviart, P. A., Finte Element Methods for Navier-Stokes Equation. Theory and Algorithms, Springer-Verlag, 1986.CrossRefGoogle Scholar
[33]Scott, L. R. and Zhang, S., Finite element interpolation of non-smooth functions satisfing boundary conditions, Math. Comp., 54 (1990), pp. 483–493.CrossRefGoogle Scholar