Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T00:45:51.619Z Has data issue: false hasContentIssue false

Residual Based A Posteriori Error Estimates for Convex Optimal Control Problems Governed by Stokes-Darcy Equations

Published online by Cambridge University Press:  28 May 2015

Ming Cui*
Affiliation:
Schools of Mathematics, Shandong University, Jinan 250100, China; LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Ningning Yan*
Affiliation:
LSEC, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
*
Corresponding author.Email address:mingcui@sdu.edu.en
Corresponding author.Email address:ynn@amss.ac.en
Get access

Abstract

In this paper, we derive a posteriori error estimates for finite element approximations of the optimal control problems governed by the Stokes-Darcy system. We obtain a posteriori error estimators for both the state and the control based on the residual of the finite element approximation. It is proved that the a posteriori error estimate provided in this paper is both reliable and efficient.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abergel, F. and Teman, T., On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), pp. 305–325.CrossRefGoogle Scholar
[2]Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.CrossRefGoogle Scholar
[3]Liu, W. and Yan, N., A posteriori error estimates for the control problems governed by stokes equations, SIAM J. Numer. Anal., 40 (2002), pp. 1850–1869.CrossRefGoogle Scholar
[4]Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, Springer-Verlag, 1994.CrossRefGoogle Scholar
[5]Chen, W., Chen, P., Gunzburger, Max and Yan, N., Superconvergence analysis of FEMs for the Stokes-Darcy system, Math. Meth. Appl. Sci., 33 (2010), pp. 1605–1617.CrossRefGoogle Scholar
[6]Chen, Z., Finite Element Methods and Their Applications, Berlin Heidelberg Springer-Verlag, 2005.Google Scholar
[7]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.Google Scholar
[8]Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S., Optimization with PDE constraints, Mathematical Modelling: Theory and Applications, Volume 23, Springer, 2008.Google Scholar
[9]Liu, W. and Yan, N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.Google Scholar
[10]Neittaanmaki, P. and Tiba, D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Marcel Dekker, New York, 1994.Google Scholar
[11]Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984.CrossRefGoogle Scholar
[12]Babuška, I. and Vogelius, M., Feedback and adaptive finite element solution of one-dimensional boundary value problems, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.Google Scholar
[13]Bieterman, M. and Babuška, I., The finite element method for parabolic equations: (I) a posteriori estimation, Numer. Math., 40 (1982), pp. 339–371.CrossRefGoogle Scholar
[14]Babuška, I. and Rheinbold, C., Error estimates for adaptive finite element computations, Numer. Math., 44 (1984), pp. 75–102.Google Scholar
[15]Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, 2000.CrossRefGoogle Scholar
[16]Verfürth, R., A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Teubner 1996.Google Scholar
[17]Verfürth, R., A posteriori error estimators for the Stokes equations, Numer. Math., 55 (1989), pp. 309–325.CrossRefGoogle Scholar
[18]Babuška, I. and Gatica, G. N., A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48 (2010), pp. 498–522.CrossRefGoogle Scholar
[19]Cui, M. and Yan, N., A posteriori error estimate for the Stokes-Darcy system, Mathematical Methods in the Applied Science, 34 (2011), pp. 1050–1064.CrossRefGoogle Scholar
[20]Liu, W. and Yan, N., A posteriori error estimates for distributed convex optimal control problems, Adv. Comp. Math., 15 (2001), pp. 285–309.Google Scholar
[21]Becker, R., Estimating the control error in discretized PDE-constrained optimization, J. Numer. Math., 14 (2006), pp. 163–185.CrossRefGoogle Scholar
[22]Li, R., Liu, W., Ma, H. and Tang, T., Adaptive finite element approximations of elliptic optimal control, SIAM J. Control Optim., 41 (2002), pp. 13211349.CrossRefGoogle Scholar
[23]Hintermüller, M., Hoppe, R. H. W., Iliash, Y. and Kieweg, M., An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM: Control, Optimisation and Calculus of Variations (COCV), 14 (2008), pp. 540–560.Google Scholar
[24]Liu, H. and Yan, N., Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, Journal of Computational and Applied Mathematics, 209 (2007), pp. 187207.CrossRefGoogle Scholar
[25]Becker, R. and Rannacher, R., An optimal control approach to a-posteriori error estimation in finite element methods, Acta Numerica (Iserles, A. ed), Cambridge University Press (2001), pp. 1–102.Google Scholar
[26]Hintermüller, M. and Hoppe, R. H. W., Goal-oriented adaptivity in control constrained optimal control of partial differential equations, SIAM J. Control Optim., 47 (2008), pp. 1721–1743.CrossRefGoogle Scholar
[27] H.-Niu, F. and Yang, D.-P., Finite Element Analysis of Optimal Control Problem Governed by Stokes Equations with L2-Norm State-Constraints, J. Comp. Math., 29 (2011), pp. 589604.Google Scholar
[28]Vexler, B. and Wollner, W., Adaptive finite elements for elliptic optimization problems with control constraints, SIAM J. Control Optim., 47 (2008), pp. 509–534.CrossRefGoogle Scholar
[29]Jäger, W. and Mikelic, A., On the interface boundary condition of Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), pp. 1111–1127.Google Scholar
[30]Layton, W. J., Schieweck, F. and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Appl. Math., 40 (2003), pp. 2195–2218.Google Scholar
[31]Glowinski, R. and He, Q.-L., A least-squares/fictitious domain method for linear elliptic problems with Robin boundary conditions, Commun. Comput. Phys., 9 (2011), pp. 587606CrossRefGoogle Scholar
[32]Girault, V. and Raviart, P. A., Finte Element Methods for Navier-Stokes Equation. Theory and Algorithms, Springer-Verlag, 1986.CrossRefGoogle Scholar
[33]Scott, L. R. and Zhang, S., Finite element interpolation of non-smooth functions satisfing boundary conditions, Math. Comp., 54 (1990), pp. 483–493.CrossRefGoogle Scholar