No CrossRef data available.
Article contents
Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations
Published online by Cambridge University Press: 28 May 2015
Abstract
A class of numerical methods is developed for second order Volterra integro-differential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the L∞-norm and L2-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 4 , Issue 3 , August 2011 , pp. 419 - 438
- Copyright
- Copyright © Global Science Press Limited 2011
References
[1]Makroglou, A., A block-by-block method for Volterra integro-differential equations with weakly-singular kernel, Math. Comp., 37 (1981), pp. 95–99.CrossRefGoogle Scholar
[2]Guo, B. Y. and Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86 (2000), pp. 635–654.CrossRefGoogle Scholar
[3]Guo, B. Y. and Wang, L. L., Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), pp. 227–276.Google Scholar
[4]Guo, B. Y. and Wang, L. L., Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), pp. 1–14.CrossRefGoogle Scholar
[5]Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods Fundamentals in Single Domains, Springer-Verlag, 2006.CrossRefGoogle Scholar
[6]Qu, C. K. and Wong, R., Szego’s conjecture on Lebesgue constants for Legendre series, Pacific J. Math., 135 (1988), pp.157–188.CrossRefGoogle Scholar
[7]Xu, C. L. and Guo, B. Y., Laguerre pseudospectral method for nonlinear partial differential equations, J. Comp. Math., 20 (2002), pp. 413–428.Google Scholar
[8]Henry, D., Geometric theory of semilinear parabolic equations, Springer-Verlag, 1989.Google Scholar
[9]Rawashdeh, E., Mcdowell, D. and Rakesh, L., Polynomial spline collocation methods for second-order Volterra integro-differential equations, IJMMS, 56 (2004), pp. 3011–3022.Google Scholar
[10]Mastroianni, G. and Monegato, G., Nystrom interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations, IMA J. Numer. Anal., 17 (1997), pp. 621–642.CrossRefGoogle Scholar
[11]Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press 2004.CrossRefGoogle Scholar
[12]Brunner, H., Makroglou, A. and Miller, R. K., Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution, Appl. Numer. Math., 23 (1997), pp. 381–402.CrossRefGoogle Scholar
[13]Brunner, H., Pedas, A. and Vainikko, G., Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), pp. 957–982.CrossRefGoogle Scholar
[14]Brunner, H. and Lambert, J. D., Stability of numerical methods for Volterra integro-differential equations, Computing, 12 (1974), pp. 75–89.CrossRefGoogle Scholar
[15]Ali, I., Brunner, H. and Tang, T., A spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27 (2009), pp. 254–265.Google Scholar
[16]Ali, I., Brunner, H. and Tang, T., Spectral methods for pantograph-type differential and integral equations with multiple delays, Front. Math. China, 4 (2009), pp. 49–61.CrossRefGoogle Scholar
[17]Shen, J., Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal., 38 (2000), pp. 1113–1133.CrossRefGoogle Scholar
[18]Shen, J. and Tang, T., Spectral and High-Order Methods with Applications, Science Press Beijing 2006.Google Scholar
[19]Balachandran, K., Park, J. Y. and Marshal Anthoni, S., Controllability of second order semilin-ear Volterra integrodifferential systems in banach spaces, Bull. Korean Math. Soc, 36 (1999), pp. 1–13.Google Scholar
[20]Garey, L. E. and Shaw, R. E., Algorithms for the solution of second order Volterra integrodifferential equations, Comput. Math. Appl., 22 (1991), pp. 27–34.CrossRefGoogle Scholar
[21]Aguilar, M. and Brunner, H., Collocation methods for second-order volterra integro-differential equations, Appl. Numer. Math., 4 (1988), pp. 455–470.CrossRefGoogle Scholar
[22]Bologna, M., Asymptotic solution for first and second order linear Volterra integro-differential equations with convolution kernels, J. Phys. A: Math. Theor., 43 (2010), pp. 1–13.CrossRefGoogle Scholar
[23]Tarang, M., Stability of the spline collocation method for second order Volterra integro-differential equations, Math. Model. Anal., 9 (2004), pp. 79–90.CrossRefGoogle Scholar
[24]Zarebnia, M. and Nikpour, Z., Solution of linear Volterra integro-differential equations via Sinc functions, Int. J. Appl. Math. Comput., 2 (2010), pp. 1–10.Google Scholar
[25]Shawa, R. E. and Garey, L. E., A parallel shooting method for second order volterra integro-differential equations with two point boundary conditions, Int. J. Comput. Math., 49 (1993), pp. 61–66.CrossRefGoogle Scholar
[26]Bochkanov, S. and Bystritsky, V, Computation of Gauss-Jacobi quadrature rule nodes and weights, http://www.alglib.net/integral/gq/gjacobi.phpGoogle Scholar
[27]Tang, T., Xu, X. and Chen, J., On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 26 (2008), pp. 825–837.Google Scholar
[28]Liu, W. B. and Tang, T., Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems, Appl. Numer. Math., 38 (2001), pp. 315–345.CrossRefGoogle Scholar
[29]Chen, Y. and Tang, T., Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math., 233 (2009), pp. 938–950.CrossRefGoogle Scholar
[30]Chen, Y. and Tang, T., Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp., 79 (2010), pp. 147–167.CrossRefGoogle Scholar