No CrossRef data available.
Article contents
Interpolation by G2 Quintic Pythagorean-Hodograph Curves
Published online by Cambridge University Press: 28 May 2015
Abstract
In this paper, the G2 interpolation by Pythagorean-hodograph (PH) quintic curves in ℝd, d ≥ 2, is considered. The obtained results turn out as a useful tool in practical applications. Independently of the dimension d, they supply a G2 quintic PH spline that locally interpolates two points, two tangent directions and two curvature vectors at these points. The interpolation problem considered is reduced to a system of two polynomial equations involving only tangent lengths of the interpolating curve as unknowns. Although several solutions might exist, the way to obtain the most promising one is suggested based on a thorough asymptotic analysis of the smooth data case. The numerical algorithm traces this solution from a particular set of data to the general case by a homotopy continuation method. Numerical examples confirm the efficiency of the proposed method.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 7 , Issue 3 , August 2014 , pp. 374 - 398
- Copyright
- Copyright © Global Science Press Limited 2014