No CrossRef data available.
Article contents
ML(n) BiCGStab: Reformulation, Analysis and Implementation*
Published online by Cambridge University Press: 28 May 2015
Abstract
With the aid of index functions, we re-derive the ML(n)BiCGStab algorithm in [Yeung and Chan, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290] systematically. There are n ways to define the ML(n)BiCGStab residual vector. Each definition leads to a different ML(n)BiCGStab algorithm. We demonstrate this by presenting a second algorithm which requires less storage. In theory, this second algorithm serves as a bridge that connects the Lanczos-based BiCGStab and the Arnoldi-based FOM while ML(n)BiCG is a bridge connecting BiCG and FOM. We also analyze the breakdown situation from the probabilistic point of view and summarize some useful properties of ML(n)BiCGStab. Implementation issues are also addressed.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 5 , Issue 3 , August 2012 , pp. 447 - 492
- Copyright
- Copyright © Global Science Press Limited 2012
Footnotes
Dedicated to the Memory of Prof. Gene Golub. This paper was presented in Gene Golub Memorial Conference, Feb. 29-Mar. 1, 2008, at University of Massachusetts. This research was supported by 2008 Flittie Sabbatical Augmentation Award, University of Wyoming.