No CrossRef data available.
Article contents
Product Gaussian Quadrature on Circular Lunes
Published online by Cambridge University Press: 28 May 2015
Abstract
Resorting to recent results on subperiodic trigonometric quadrature, we provide three product Gaussian quadrature formulas exact on algebraic polynomials of degree n on circular lunes. The first works on any lune, and has cardinality. The other two have restrictions on the lune angular intervals, but their cardinality is
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 7 , Issue 2 , May 2014 , pp. 251 - 264
- Copyright
- Copyright © Global Science Press Limited 2014
References
[1]
Bauman, B. and Xiao, H., Gaussian quadrature for optical design with noncircular pupils and fields, and broad wavelength range, Proc. SPIE
7652(2) (2010), 1–12.Google Scholar
[2]
Bos, L. and Vianello, M., Subperiodic trigonometric interpolation and quadrature, Appl. Math. Comput.
218 (2012), 10630–10638.Google Scholar
[3]
Da Fies, G., Sommariva, A. and Vianello, M., Algebraic cubature by linear blending of elliptical arcs, Appl. Numer. Math.
74 (2013), 49–61.CrossRefGoogle Scholar
[4]
Da Fies, G. and Vianello, M., Algebraic cubature on planar lenses and bubbles, Dolomites Res. Notes Approx.
5 (2012), 7–12.Google Scholar
[5]
Da Fies, G. and Vianello, M., Trigonometric Gaussian quadrature on subintervals of the period, Electron. Trans. Numer. Anal.
39 (2012), 102–112.Google Scholar
[6]
Da Fies, G. and Vianello, M., On the Lebesgue constant of subperiodic trigonometric interpolation, J. Approx>. Theory
167 (2013), 59–64.Google Scholar
[7]
Da Fies, G., Sommariva, A. and Vianello, M., Matlab functions for subperiodic trigonometric quadrature and for product Gaussian quadrature on circular sections, online at: http://www.math.unipd.it/∼marcov/CAAsoft.html.Google Scholar
[8]
Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Oxford University Press, New York, 2004.Google Scholar
[9]
Gautschi, W., Orthogonal polynomials (in Matlab), J. Comput. Appl. Math.
178 (2005), 215–234, software online at: http://www.cs.purdue.edu/archives/2002/wxg/codes.Google Scholar
[10]
Gautschi, W., Sub-range Jacobi polynomials, Numer. Algorithms
61 (2012), 649–657.Google Scholar
[11]
Langton, S.G., The quadrature of lunes, from Hippocrates to Euler, Euler at 300, 5362, MAA Spectrum, Math. Assoc. America, Washington, DC, 2007.Google Scholar
[12]
Meurant, G. and Sommariva, A., Fast variants of the Golub and Welsch algorithm for symmetric weight functions in Matlab, Numer. Algorithms, published online 23 November 2013.Google Scholar
[13]
Pleśniak, W., Multivariate polynomial inequalities via pluripotential theory and subanalytic geometry methods, Banach Center Publ.
72 (2006), 251–261.CrossRefGoogle Scholar
[14]
Pleśniak, W., Multivariate Jackson Inequality, J. Comput. Appl. Math.
233 (2009), 815–820.Google Scholar
[15]
Postnikov, M.M., The problem of squarable lunes, American Mathematical Monthly
107 (2000), 645–651 (translated from the Russian by Abe Shenitzer).Google Scholar
[16]
Santin, G., Sommariva, A. and Vianello, M., An algebraic cubature formula on curvilinear polygons, Appl. Math. Comput.
217 (2011), 10003–10015.Google Scholar
[17]
Sommariva, A. and Vianello, M., Gauss-Green cubature and moment computation over arbitrary geometries, J. Comput. Appl. Math.
231 (2009), 886–896.Google Scholar
[18]
Stasica, J., The Whitney condition for subanalytic sets, Zeszyty Nauk. Uniw. Jagiellon. Prace Mat.
23 (1982), 211–221.Google Scholar