Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T08:37:21.740Z Has data issue: false hasContentIssue false

Mechanisms involved in the nutritional regulation of mRNA translation: features of the avian model

Published online by Cambridge University Press:  14 December 2007

Sophie Tesseraud*
Affiliation:
Institut National de la Recherche Agronomique, Tours, 37 380 Nouzilly, France
Mourad Abbas
Affiliation:
Institut National de la Recherche Agronomique, Tours, 37 380 Nouzilly, France
Sophie Duchene
Affiliation:
Institut National de la Recherche Agronomique, Tours, 37 380 Nouzilly, France
Karine Bigot
Affiliation:
Institut National de la Recherche Agronomique, Tours, 37 380 Nouzilly, France
Pascal Vaudin
Affiliation:
Institut National de la Recherche Agronomique, Tours, 37 380 Nouzilly, France
Joëlle Dupont
Affiliation:
Institut National de la Recherche Agronomique, Tours, 37 380 Nouzilly, France
*
*Corresponding author: Dr Sophie Tesseraud, fax +33 2 47 42 77 78, email tesserau@tours.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Abstract:Insulin and amino acids are key factors in regulating protein synthesis. The mechanisms of their action have been widely studied for several years. The insulin signal is mediated by the activation of intracellular kinases such as phosphatidylinositol–3'kinase and the mammalian target of rapamycin (mTOR), affecting the phosphorylation of some major effectors involved in the regulation of translation initiation, i.e. p70 S6 kinase (p70S6K) and the translational repressor eukaryotic initiation factor 4E binding protein (4E-BP1). The amino acid–induced signalling cascade also originates from mTOR and promotes p70S6K and 4E–BP1 activation. However, the mechanisms of regulation are complex and little understood, especially in vivo. Elucidating these mechanisms is important for both fundamental physiology and nutritional applications, i.e. better control of the use of nutrients and optimisation of dietary amino acid supplies in various physiological and physiopathological situations. In comparative physiology, the chicken is an interesting model to gain better understanding of the nutritional regulation of mRNA translation because of the very high rates of muscle growth and protein synthesis, and the unusual features compared with mammals. In the present review we provide an overview of the roles of insulin and amino acids as regulators of protein synthesis in both mammals and avian species.

Type
Research Article
Copyright
Copyright © The Authors 2006

References

Adamo, M, Simon, J, Rosebrough, RW, McMurtry, JP, Steele, NC & LeRoith, D (1987) Characterization of the chicken muscle insulin receptor. General Comparative Endocrinology 68, 456465.CrossRefGoogle ScholarPubMed
Akiba, Y, Chida, Y, Takahashi, T, Ohtomo, Y, Sato, K & Takahashi, K (1999) Persistent hypoglycemia induced by continuous insulin infusion in broiler chickens. British Poultry Science 40, 701705.CrossRefGoogle ScholarPubMed
Akimoto, K, Nakaya, M, Yamanaka, T, Tanaka, J, Matsuda, S, Weng, QP, Avruch, J & Ohno, S (1998) Atypical protein kinase Cλ binds and regulates p70 S6 kinase. Biochemical Journal 335, 417424.CrossRefGoogle ScholarPubMed
Alessi, DR, Kozlowski, MT, Weng, QP, Morrice, N & Avruch, J (1998) 3–Phosphoinositide–dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Current Biology 8, 6981.CrossRefGoogle ScholarPubMed
Ali, SM & Sabatini, DM (2005) Structure of S6 kinase 1 determines whether raptor–mTOR or rictor–mTOR phosphorylates its hydrophobic motif site. Journal of Biological Chemistry 280, 1944519448.CrossRefGoogle ScholarPubMed
Antin, PB & Ordahl, CP (1991) Isolation and characterization of an avian myogenic cell line. Developmental Biology 143, 111121.CrossRefGoogle ScholarPubMed
Aoki, M, Blazek, E & Vogt, PK (2001) A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proceedings of the National Academy of Sciences USA 98, 136141.CrossRefGoogle ScholarPubMed
Baccarini, M (2005) Second nature: biological functions of the Raf-1 kinase. FEBS Letters 579, 32713277.CrossRefGoogle ScholarPubMed
Backer, JM, Myers, MG Jr, Shoelson, SE, Chin, DJ, Sun, XJ, Miralpeix, M, Hu, P, Margolis, B, Skolnik, EY, Schlessinger, J (1992) Phosphatidylinositol 3'–kinase is activated by association with IRS–1 during insulin stimulation. EMBO Journal 11, 34693479.CrossRefGoogle ScholarPubMed
Balage, M, Sinaud, S, Prod'homme, M, Dardevet, D, Vary, TC, Kimball, SR, Jefferson, LS & Grizard, J (2001) Amino acids and insulin are both required to regulate assembly of the eIF4E. eIF4G complex in rat skeletal muscle. American Journal of Physiology 281, E565–E574.Google ScholarPubMed
Belham, C, Wu, S & Avruch, J (1999) Intracellular signalling: PDK1–a kinase at the hub of things. Current Biology 11, R93–R96.CrossRefGoogle Scholar
Beugnet, A, Tee, AR, Taylor, PM & Proud, CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling in intracellular amino acid availability. Biochemical Journal 372, 555566.CrossRefGoogle ScholarPubMed
Bhandari, BK, Feliers, D, Duraisamy, S, Stewart, JL, Gingras, AC, Abboud, HE, Choudhury, GG, Sonenberg, N & Kasinath, BS (2001) Insulin regulation of protein translation repressor 4E–BP1, an eIF4E–binding protein in renal epithelial cells. Kidney International 59, 866875.CrossRefGoogle ScholarPubMed
Bigot, K, Taouis, M, Picard, M & Tesseraud, S (2003 a) Early post–hatching starvation delays P70 S6 kinase activation in the muscle of neonatal chicks. British Journal of Nutrition 90, 10231029.CrossRefGoogle ScholarPubMed
Bigot, K, Taouis, M & Tesseraud, S (2003 b) Refeeding and insulin regulate S6K1 activity in chicken skeletal muscles. Journal of Nutrition 133, 369373.CrossRefGoogle ScholarPubMed
Bodine, SC, Stitt, TN, Gonzalez, M, Kline, WO, Stover, GL, Bauerlein, R, Zlotchenko, E, Scrimgeour, A, Lawrence, JC, Glass, DJ & Yancopoulos, GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology 3, 10141019.CrossRefGoogle ScholarPubMed
Bolster, DR, Jefferson, LS & Kimball, SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid– and exercise–induced signalling. Proceedings of the Nutrition Society 63, 351356.CrossRefGoogle ScholarPubMed
Butler, M, McKay, RA, Popoff, IJ, Gaarde, WA, Witchell, D, Murray, SF, Dean, NM, Bhanot, S & Monia, BP (2002) Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 10281034.CrossRefGoogle ScholarPubMed
Carlson, CJ, White, MF & Rondinone, CM (2004) Mammalian target of rapamycin regulates IRS–1 serine 307 phosphorylation. Biochemical and Biophysical Research Communications 316, 533539.CrossRefGoogle ScholarPubMed
Chen, Z, Gibson, TB, Robinson, F, Silvestro, L, Pearson, G, Xu, B, Wright, A, Vanderbilt, C & Cobb, MH (2001) MAP kinases. Chemical Reviews 101, 24492476.CrossRefGoogle ScholarPubMed
Childs, TJ & Mak, AS (1993) Smooth–muscle mitogen-activated protein (MAP) kinase: purification and characterization, and the phosphorylation of caldesmon. Biochemical Journal 296, 745751.CrossRefGoogle ScholarPubMed
Cramb, G, Langslow, DR & Phillips, JH (1982) The binding of pancreatic hormones to isolated chicken hepatocytes. General and Comparative Endocrinology 46, 297309.CrossRefGoogle ScholarPubMed
Czech, MP (1985) The nature and regulation of the insulin receptor: structure and function. Annual Review of Physiology 47, 357381.CrossRefGoogle ScholarPubMed
Dardevet, D, Sornet, C, Attaix, D, Baracos, VE & Grizard, J (1994) Insulin–like growth factor–1 and insulin resistance in skeletal muscles of adult and old rats. Endocrinology 134, 14751484.CrossRefGoogle ScholarPubMed
Dardevet, D, Sornet, C, Vary, T & Grizard, J (1996) Phosphatidylinositol 3–kinase and p70 S6 kinase participate in the regulation of protein turnover in skeletal muscle by insulin and insulin–like growth factor I. Endocrinology 137, 40874094.CrossRefGoogle ScholarPubMed
Dong, LQ & Liu, F (2005) PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. American Journal of Physiology 289, E187–E196.Google ScholarPubMed
Dufner, A & Thomas, G (1999) Ribosomal S6 kinase signalling and the control of translation. Experimental Cell Research 253, 100109.CrossRefGoogle ScholarPubMed
Dupont, J, Chen, J, Derouet, M, Simon, J, Leclercq, B & Taouis, M (1999 a) Metabolic differences between genetically lean and fat chickens are partly attributed to the alteration of insulin signaling in liver. Journal of Nutrition 129, 19371944.CrossRefGoogle Scholar
Dupont, J, Dagou, C, Derouet, M, Simon, J & Taouis, M (2004) Early steps of insulin receptor signaling in chicken and rat: apparent refractoriness in chicken muscle. Domestic Animal Endocrinology 26, 127142.CrossRefGoogle ScholarPubMed
Dupont, J, Derouet, M, Simon, J & Taouis, M (1998 a) Effect of nutritional state on the formation of a complex involving insulin receptor IRS–1, the 52 kDa Src homology/collagen protein (Shc) isoform and phosphatidylinositol 3'–kinase activity. Biochemical Journal 335, 293300.CrossRefGoogle ScholarPubMed
Dupont, J, Derouet, M, Simon, J, Taouis, M (1998 b) Nutritional state regulates insulin receptor and IRS–1 phosphorylation and expression in chicken. American Journal of Physiology 274, E309–E316.Google ScholarPubMed
Dupont, J, Derouet, M, Simon, J & Taouis, M (1999 b) Corticosterone alters insulin signaling in chicken muscle and liver at different steps. Journal of Endocrinology 162, 6776.CrossRefGoogle ScholarPubMed
Egea, J, Espinet, C, Soler, RM, Dolcet, X, Yuste, VJ, Encinas, M, Iglesias, M, Rocamora, N & Comella, JX (2001) Neuronal survival induced by neurotrophins requires calmodulin. Journal of Cell Biology 154, 585597.CrossRefGoogle ScholarPubMed
Endo, F & Elsas, LJ II (1984) Structural analysis and subunit interaction of insulin receptor from membranes of cultured embryonic chick heart cells. Endocrinology 115, 18281837.CrossRefGoogle ScholarPubMed
Fantin, VR, Sparling, JD, Slot, JW, Keller, SR, Lienhard, GE & Lavan, BE (1998) Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. Journal of Biological Chemistry 273, 1072610732.CrossRefGoogle ScholarPubMed
Farese, RV (2002) Function and dysfunction of aPKC isoforms for glucose transport in insulin–sensitive and insulin–resistant states. American Journal of Physiology 283, E1–E11.Google ScholarPubMed
Faridi, J, Fawcett, J, Wang, L & Roth, RA (2003) Akt promotes increased mammalian cell size by stimulating protein synthesis and inhibiting protein degradation. American Journal of Physiology 285, E964–E972.Google ScholarPubMed
Foster, FM, Traer, CJ, Abraham, SM & Fry, MJ (2003) The phosphoinositide (PI) 3–kinase family. Journal of Cell Science 116, 30373040.CrossRefGoogle ScholarPubMed
Goberdhan, DC & Wilson, C (2003) PTEN: tumour suppressor, multifunctional growth regulator and more. Human Molecular Genetics 12, R239–R248.CrossRefGoogle ScholarPubMed
Greene, MW, Sakaue, H, Wang, L, Alessi, DR & Roth, RA (2003) Modulation of insulin–stimulated degradation of human insulin receptor substrate–1 by serine 312 phosphorylation. Journal of Biological Chemistry 278, 81998211.CrossRefGoogle ScholarPubMed
Grizard, J, Picard, B, Dardevet, D, Balage, M & Rochon, C (1999) Regulation of muscle growth and development. In Protein Metabolism and Nutrition, EAAP Publication no. 96, pp. 177201 [Lobley, GE, White, A and MacRae, JC, editors]. Wageningen, The Netherlands: EAAP Publications.Google Scholar
Gustafson, TA, He, W, Craparo, A, Schaub, CD & O'Neill, TJ (1995) Phosphotyrosine–dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non–SH2 domain. Molecular Cellular Biology 15, 25002508.CrossRefGoogle Scholar
Haddad, F & Adams, GR (2004) Inhibition of MAP/ERK kinase prevents IGF–I–induced hypertrophy in rat muscles. Journal of Applied Physiology 96, 203210.CrossRefGoogle ScholarPubMed
Hagemann, C & Rapp, UR (1999) Isotype–specific functions of Raf kinases. Experimental Cell Research 253, 3446.CrossRefGoogle ScholarPubMed
Halevy, O, Nadel, Y, Barak, M, Rozenboim, I & Sklan, D (2003) Early posthatch feeding stimulates satellite cell proliferation and skeletal muscle growth in turkey poults. Journal of Nutrition 133, 13761382.CrossRefGoogle ScholarPubMed
Hanada, M, Feng, J & Hemmings, BA (2004) Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochimica Biophysica Acta 1697, 316.CrossRefGoogle ScholarPubMed
Hara, K, Long, X, Yoshino, K, Oshiro, N, Hidayat, S, Tokunaga, C, Avruch, J & Yonezawa, K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177189.CrossRefGoogle ScholarPubMed
Hara, K, Yonezawa, K, Weng, QP, Kozlowski, MT, Belham, C & Avruch, J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF–4E BP1 through a common effector mechanism. Journal of Biological Chemistry 273, 1448414494.CrossRefGoogle ScholarPubMed
Hardie, DG (2004) The AMP–activated protein kinase pathway–new players upstream and downstream. Journal of Cell Science 117, 54795487.CrossRefGoogle ScholarPubMed
Harrington, LS, Findlay, GM & Lamb, RF (2005) Restraining PI3K: mTOR signalling goes back to the membrane. Trends in Biochemical Sciences 30, 3542.CrossRefGoogle ScholarPubMed
Harris, TE & Lawrence, JC Jr (2003) TOR signaling. Science STKE 212, re15.Google Scholar
Hay, N & Sonenberg, N (2004) Upstream and downstream of mTOR. Genes and Development 18, 19261945.CrossRefGoogle ScholarPubMed
Herbert, TP, Kilhams, GR, Batty, IH & Proud, CG (2000) Distinct signalling pathways mediate insulin and phorbol ester–stimulated eukaryotic initiation factor 4F assembly and protein synthesis in HEK 293 cells. Journal of Biological Chemistry 275, 1124911256.CrossRefGoogle ScholarPubMed
Iijima, Y, Laser, M, Shiraishi, H, Willey, CD, Sundaravadivel, B, Xu, L, Mc Dermott, PJ, Kuppuswamy, D (2002) c–RAF/MEK/ERK pathway controls protein kinase C–mediated p70 S6K activation in adult cardiac muscle cells. Journal of Biological Chemistry 277, 2306523075.CrossRefGoogle Scholar
Inoki, K, Li, Y, Zhu, TQ, Wu, J & Guan, KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology 4, 648657.CrossRefGoogle ScholarPubMed
Ishihara, H, Sasaoka, T, Kagawa, S, Murakami, S, Fukui, K, Kawagishi, Y, Yamazaki, K, Sato, A, Iwata, M, Urakaze, M, Ishiki, M, Wada, T, Yaguchi, S, Tsuneki, H, Kimura, I & Kobayashi, M (2003) Association of the polymorphisms in the 5'–untranslated region of PTEN gene with type 2 diabetes in a Japanese population. FEBS Letters 554, 450454.CrossRefGoogle Scholar
Jiang, G, Dallas–Yang, Q, Biswas, S, Li, Z & Zhang, BB (2004) Rosiglitazone, an agonist of peroxisome–proliferator–activated receptor gamma (PPAR gamma), decreased inhibitory serine phosphorylation of IRS–1 in vitro and in vivo. Biochemical Journal 377, 339346.CrossRefGoogle Scholar
Johnson, AL, Bridgham, JT & Swenson, JA (2001) Activation of the Akt/protein kinase B signaling pathway is associated with granulosa cell survival. Biology of Reproduction 64, 15661574.CrossRefGoogle ScholarPubMed
Johnston, AM, Pirola, L & Van Obberghen, E (2003) Molecular mechanisms of insulin receptor substrate protein–mediated modulation of insulin signalling. FEBS Letters 546, 3236.CrossRefGoogle ScholarPubMed
Kato, H, Okubo, Y, Matsumura, Y, Roberts, CT Jr, Sugahara, K & LeRoith, D (2000) The tyrosine kinase activity of the chicken insulin receptor is similar to that of the human insulin receptor. Bioscience Biotechnology and Biochemistry 64, 903906.CrossRefGoogle ScholarPubMed
Kawaguchi, T, Nomura, K, Hirayama, Y & Kitagawa, T (1987) Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Research 47, 44604464.Google ScholarPubMed
Khamzina, L, Veilleux, A, Bergeron, S & Marette, A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity–linked insulin resistance. Endocrinology 146, 14731481.CrossRefGoogle ScholarPubMed
Kim, DH, Sarbassov, DD, Ali, SM, King, JE, Latek, RR, Erdjument-Bromage, H, Tempst, P & Sabatini, DM (2002) mTOR interacts with raptor to form a nutrient–sensitive complex that signals to the cell growth machinery. Cell 110, 163175.CrossRefGoogle Scholar
Kim, DH, Sarbassov, DD, Ali, SM, Latek, RR, Guntur, KV, Erdjument-Bromage, H, Tempst, P & Sabatini, DM (2003) GβL, a positive regulator of the rapamycin–sensitive pathway required for the nutrient–sensitive interaction between raptor and mTOR. Molecular Cell 11, 895904.CrossRefGoogle ScholarPubMed
Kimball, SR (1999) Eukaryotic initiation factor eIF2. International Journal of Biochemistry and Cell Biology 31, 2529.CrossRefGoogle ScholarPubMed
Kimball, SR (2002) Regulation of global and specific mRNA translation by amino acids. Journal of Nutrition 132, 883886.CrossRefGoogle ScholarPubMed
Kimball, SR & Farrell, PA, Jefferson, LS (2002) Invited review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. Journal of Applied Physiology 93, 11681180.CrossRefGoogle ScholarPubMed
Kimball, SR & Jefferson, LS (2002) Control of protein synthesis by amino acid availability. Current Opinion in Clinical Nutrition and Metabolic Care 5, 6367.CrossRefGoogle ScholarPubMed
Kimball, SR & Jefferson, LS (2004 a) Molecular mechanisms though which amino acids mediate signaling though the mammalian target of rapamycin. Current Opinion in Clinical Nutrition and Metabolic Care 7, 3944.CrossRefGoogle Scholar
Kimball, SR & Jefferson, LS (2004 b) Regulation of global and specific mRNA translation by oral administration of branched–chain amino acids. Biochemical and Biophysical Research Communications 313, 423427.CrossRefGoogle ScholarPubMed
Kimball, SR & Jefferson, LS (2005) Role of amino acids in the translational control of protein synthesis in mammals. Seminars in Cell and Developmental Biology 16, 2127.CrossRefGoogle ScholarPubMed
Kimball, SR, Vary, TC & Jefferson, LS (1994) Regulation of protein synthesis by insulin. Annual Review of Physiology 56, 321348.CrossRefGoogle ScholarPubMed
Kyriakis, JM & Avruch, J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81, 807869.CrossRefGoogle Scholar
Lavan, BE, Fantin, VR, Chang, ET, Lane, WS, Keller, SR & Lienhard, GE (1997) A novel 160–kDa phosphotyrosine protein in insulin–treated embryonic kidney cells is a new member of the insulin receptor substrate family. Journal of Biological Chemistry 272, 2140321407.CrossRefGoogle ScholarPubMed
Le Marchand-Brustel, Y, Gual, P, Gremeaux, T, Gonzalez, T, Barres, R & Tanti, JF (2003) Fatty acid–induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochemical Society Transactions 31, 152156.CrossRefGoogle ScholarPubMed
Leshem, Y, Gitelman, I, Ponzetto, C & Halevy, O (2002) Preferential binding of Grb2 or phosphatidylinositol 3–kinase to the met receptor has opposite effects on HGF–induced myoblast proliferation. Experimental Cell Research 274, 288298.CrossRefGoogle ScholarPubMed
Li, Y, Corradetti, MN, Inoki, K & Guan, KL (2004) TSC2: filling the GAP in the mTOR signaling pathway. Trends in Biochemical Sciences 29, 3238.CrossRefGoogle Scholar
Loewith, R, Jacinto, E, Wullschleger, S, Lorberg, A, Crespo, JL, Bonenfant, D, Oppliger, W, Jenoe, P & Hall, MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Molecular Cell 10, 457468.CrossRefGoogle ScholarPubMed
Long, W, Saffer, L, Wei, L & Barrett, EJ (2000) Amino acids regulate skeletal muscle PHAS–1 and p70 S6 kinase phosphorylation independently to insulin. American Journal of Physiology 279, E301–E306.Google Scholar
Maehama, T, Taylor, GS & Dixon, JE (2001) PTEN and myotubularin: novel phosphoinositide phosphates. Annual Review of Biochemistry 70, 247279.CrossRefGoogle Scholar
Meijer, AJ & Dubbelhuis, P (2004) Amino acid signalling and the integration of metabolism. Biochemical and Biophysical Research Communications 313, 397403.CrossRefGoogle ScholarPubMed
Meyuhas, O (2000) Synthesis of the translational apparatus is regulated at the translational level. European Journal of Biochemistry 267, 63216330.CrossRefGoogle ScholarPubMed
Mora, A, Komander, D, van Aalten, DM & Alessi, DR (2004) DR PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell and Development Biology 15, 161170.CrossRefGoogle Scholar
Murakami, S, Sasaoka, T, Wada, T, Fukui, K, Nagira, K, Ishihara, H, Usui, I & Kobayashi, M (2004) Impact of Src homology 2–containing inositol 5'–phosphatase 2 on the regulation of insulin signaling leading to protein synthesis in 3T3–L1 adipocytes cultured with excess amino acids. Endocrinology 145, 32153223.CrossRefGoogle ScholarPubMed
Muramatsu, T (1990) Nutrition and whole–body protein turnover in the chicken in relation to mammalian species. Nutrition Research Reviews 3, 211228.CrossRefGoogle ScholarPubMed
Nave, BT, Ouwens, M, Withers, DJ, Alessi, DR & Shepherd, PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino–acid deficiency on protein translation. Biochemical Journal 344, 427431.CrossRefGoogle ScholarPubMed
O'Connor, PM, Bush, JA, Suryawan, A, Nguyen, HV & Davis, TA (2003 a) Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. American Journal of Physiology 284, E110–E119.Google ScholarPubMed
O'Connor, PM, Kimball, SR, Suryawan, A, Bush, JA, Nguyen, HV, Jefferson, LS & Davis, T (2003 b) Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. American Journal of Physiology 285, E40–E53.Google ScholarPubMed
O'Connor, PM, Kimball, SR, Suryawan, A, Bush, JA, Nguyen, HV, Jefferson, LS & Davis, TA (2004) Regulation of neonatal liver protein synthesis by insulin and amino acids in pigs. American Journal of Physiology 286, E994–E1003.Google ScholarPubMed
Ohanna, M, Sobering, AK, Lapointe, T, Lorenzo, L, Praud, C, Petroulakis, E, Sonenberg, N, Kelly, PA, Sotiropoulos, A & Pende, M (2005) Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nature Cell Biology 7, 286294.CrossRefGoogle ScholarPubMed
Oldham, S & Hafen, E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends in Cell Biology 13, 7985.CrossRefGoogle Scholar
Ozes, ON, Akca, H, Mayo, LD, Gustin, JA, Maehema, T, Dixon, JE & Donner, DB (2001) A phosphatidylinositol 3–kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signalling through insulin receptor substrate–1. Proceedings of the National Academy of Sciences USA 98, 46404645.CrossRefGoogle ScholarPubMed
Pain, VM (1996) Initiation of protein synthesis in eukaryotic cells. European Journal of Biochemistry 236, 747771.CrossRefGoogle ScholarPubMed
Patti, ME, Sun, XJ, Bruening, JC, Araki, E, Lipes, MA, White, MF & Kahn, CR (1995) 4PS/insulin receptor substrate (IRS)–2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. Journal of Biological Chemistry 270, 2467024673.CrossRefGoogle ScholarPubMed
Pelicci, G, Lanfrancone, L, Grignani, F, McGlade, J, Cavallo, F, Forni, G, Nicoletti, I, Grignani, F, Pawson, T & Pelicci, PG (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93104.CrossRefGoogle ScholarPubMed
Pende, M, Um, SH, Mieulet, V, Sticker, M, Goss, VL, Mestan, J, Mueller, M, Fumagalli, S, Kozma, SC & Thomas, G (2004) S6K1(–/–)/S6K2(–/–) mice exhibit perinatal lethality and rapamycin–sensitive 5'–terminal oligopyrimidine mRNA translation and reveal a mitogen–activated protein kinase–dependent S6 kinase pathway. Molecular and Cellular Biology 24, 31123124.CrossRefGoogle Scholar
Prod'homme, M, Balage, M, Debras, E, Farges, MC, Kimball, S, Jefferson, L & Grizard, J (2005) Differential effects of insulin and dietary amino acids on muscle protein synthesis in adult and old rats. Journal of Physiology 563, 235248.CrossRefGoogle ScholarPubMed
Prod'homme, M, Rieu, I, Balage, M, Dardevet, D & Grizard, J (2004) Insulin and amino acids both strongly participate to the regulation of protein metabolism. Current Opinion in Clinical Nutrition and Metabolic Care 7, 7177.CrossRefGoogle Scholar
Proud, CG (2002) Regulation of mammalian translation factors by nutrients. European Journal of Biochemistry 269, 53385349.CrossRefGoogle ScholarPubMed
Proud, CG (2004) mTOR–mediiated regulation of translation factors by amino acids. Biochemical and Biophysical Research Communications 313, 429436.CrossRefGoogle ScholarPubMed
Pullen, N & Thomas, G (1997) The modular phosphorylation and activation of p70s6k. FEBS Letters 410, 7882.CrossRefGoogle ScholarPubMed
Reynolds, TH, IV Bodine, SC & Lawrence, JC Jr (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. Journal of Biological Chemistry 277, 1765717662.CrossRefGoogle ScholarPubMed
Rohde, J, Heitman, J & Cardenas, ME (2001) The TOR kinases link nutrient sensing to cell growth. Journal of Biological Chemistry 276, 95839586.CrossRefGoogle ScholarPubMed
Romanelli, A, Martin, KA, Toker, A & Blenis, J (1999) p70 S6 kinase is regulated by protein kinase Cζ and participates in a phosphoinositide 3–kinase–regulated signalling complex. Molecular and Cellular Biology 19, 29212928.CrossRefGoogle Scholar
Rommel, C, Bodine, SC, Clarke, BA, Rossman, R, Nunez, L, Stitt, TN, Yancopoulos, GD & Glass, DJ (2001) Mediation of IGF–1–induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology 3, 10091013.CrossRefGoogle Scholar
Sarbassov, DD, Ali, SM & Kim, DH, Guertin, DA, Latek, RR, Erdjument-Bromage, H, Tempst, P & Sabatini, DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin–insensitive and raptor–independent pathway that regulates the cytoskeleton. Current Biology 14, 12961302.CrossRefGoogle ScholarPubMed
Sarbassov, DD, Guertin, DA, Ali, SM & Sabatini, DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 10981101.CrossRefGoogle ScholarPubMed
Sekulic, A, Hudson, CC, Homme, JL, Yin, P, Otterness, DM, Karnitz, LM & Abraham, RT (2000) A direct linkage between the phosphoinositide 3–kinase–AKT signaling pathway and the mammalian target of rapamycin in mitogen–stimulated and transformed cells. Cancer Research 60, 35043513.Google ScholarPubMed
Shepherd, PR, Withers, DJ & Siddle, K (1998) Phosphoinositide 3–kinase, the key switch mechanism in insulin signalling. Biochemical Journal 333, 471490.CrossRefGoogle ScholarPubMed
Simon, J (1989) Chicken as a useful species for the comprehension of insulin action. Critical Reviews in Poultry Biology 2, 121148.Google Scholar
Simon, J, Derouet, M & Gespach, C (2000) An anti-insulin serum, but not a glucagon antagonist, alters glycemia in fed chickens. Hormone and Metabolic Research 32, 139141.CrossRefGoogle Scholar
Simon, J, Freychet, P & Rosselin, G (1977) A study of insulin binding sites in the chicken tissues. Diabetologia 13, 219228.CrossRefGoogle ScholarPubMed
Simon, J & Leroith, D (1986) Insulin receptors of chicken liver and brain. Characterization of alpha and beta subunit properties. European Journal of Biochemistry 158, 125132.CrossRefGoogle ScholarPubMed
Sinaud, S, Balage, M, Bayle, G, Dardevet, D, Vary, TC, Kimball, SR, Jefferson, LS & Grizard, J (1999) Diazoxide–induced insulin deficiency greatly reduced muscle protein synthesis in rats: involvement of eIF4E. American Journal of Physiology 276, E50–E61Google ScholarPubMed
Skolnik, EY, Batzer, A, Li, N, Lee, CH, Lowenstein, E, Mohammadi, M, Margolis, B & Schlessinger, J (1993) The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science 260, 19531955.CrossRefGoogle ScholarPubMed
Stocker, H, Radimerski, T, Schindelholz, B, Wittwer, F, Belawat, P, Daram, P, Breuer, S, Thomas, G & Hafen, E (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nature Cell Biology 5, 559565.CrossRefGoogle ScholarPubMed
Sun, XJ, Rothenberg, P, Kahn, CR, Backer, JM, Araki, E, Wilden, PA, Cahill, DA, Goldstein, BJ & White, MF (1991) Structure of the insulin receptor substrate IRS–1 defines a unique signal transduction protein. Nature 352, 7377.CrossRefGoogle ScholarPubMed
Taouis, M, Derouet, M, Caffin, JP, Chavanieu, A & Simon, J (1993) Insulin receptor and insulin sensitivity in a chicken hepatoma cell line. Molecular and Cellular Endocrinology 96, 113123.CrossRefGoogle Scholar
Taouis, M, Dupont, J, Gillet, A, Derouet, M & Simon, J (1998) Insulin receptor substrate 1 antisense expression in an hepatoma cell line reduces cell proliferation and induces overexpression of the Src homology 2 domain and collagen protein (SHC). Molecular and Cellular Endocrinology 137, 177186.CrossRefGoogle Scholar
Taouis, M, Taylor, SI & Reitman, M (1996) Cloning of the chicken insulin receptor substrate 1 gene. Gene 178, 5155.CrossRefGoogle ScholarPubMed
Tesseraud, S (1995) Métabolisme protéique chez le poulet en croissance. Effet des protéines alimentaires (Protein metabolism in the growing chicken. Effect of food proteins). INRA Productions Animales 8, 197212.CrossRefGoogle Scholar
Tesseraud, S, Bigot, K & Taouis, M (2003) Amino acid availability regulates S6K1 and protein synthesis in avian insulin–intensive QM7 myoblasts. FEBS Letters 540, 176180.CrossRefGoogle Scholar
Tokudome, T, Horio, T, Yoshihara, F, Suga, S, Kawano, Y, Kohno, M & Kangawa, K (2004) Direct effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Metabolism 53, 710715.CrossRefGoogle ScholarPubMed
Tremblay, F & Marette, A (2001) Amino acid and insulin signalling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. Journal of Biological Chemistry 276, 3805238060.CrossRefGoogle ScholarPubMed
Ueki, K, Yamamoto-Honda, R, Kaburagi, Y, Yamauchi, T, Tobe, K, Burgering, BM, Coffer, PJ, Komuro, I, Akanuma, Y, Yazaki, Y & Kadowaki, T (1998) Potential role of protein kinase B in insulin–induced glucose transport, glycogen synthesis, and protein synthesis. Journal of Biological Chemistry 273, 53155322.CrossRefGoogle ScholarPubMed
Um, SH, Frigerio, F, Watanabe, M, Picard, F, Joaquin, M, Sticker, M, Fumagalli, S, Allegrini, PR, Kozma, SC, Auwerx, J & Thomas, G (2004) Absence of S6K1 protects against age– and diet–induced obesity while enhancing insulin sensitivity. Nature 431, 200205.CrossRefGoogle ScholarPubMed
Vaudin, P, Dupont, J, Duchene, S, Audouin, E, Crochet, S, Berri, C & Tesseraud, S (2006) Phosphatase PTEN in chicken muscle is regulated during ontogenesis. Domesitc Animal Endocrinology (In the press).CrossRefGoogle ScholarPubMed
Wellbrock, C, Karasarides, M & Marais, R (2004) The RAF proteins take centre stage. Nature Reviews. Molecular Cell Biology 5, 875885.CrossRefGoogle ScholarPubMed
Weng, LP, Smith, WM, Brown, JL & Eng, C (2001) PTEN inhibits insulin–stimulated MEK/MAPK activation and cell growth by blocking IRS–1 phosphorylation and IRS–1/Grb–2/Sos complex formation in a breast cancer model. Human Molecular Genetics 10, 605616.CrossRefGoogle Scholar
Weng, QP, Kozlowski, M, Belham, C, Zhang, A, Comb, MJ & Avruch, J (1998) Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site–specific anti–phosphopeptide antibodies. Journal of Biological Chemistry 273, 1662116629.CrossRefGoogle ScholarPubMed
Whiteman, EL, Cho, H & Birnbaum, MJ (2002) Role of Akt/protein kinase B in metabolism. Trends in Endocrinology and Metabolism 13, 444451.CrossRefGoogle ScholarPubMed
Wijesekara, N, Konrad, D, Eweida, M, Jefferies, C, Liadis, N, Giacca, A, Crackower, M, Suzuki, A, Mak, TW, Kahn, CR, Klip, A & Woo, M (2005) Muscle–specific Pten deletion protects against insulin resistance and diabetes. Molecular and Cellular Biology 25, 11351145.CrossRefGoogle ScholarPubMed
Yamada, KM & Araki, M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. Journal of Cell Science 114, 23752382.CrossRefGoogle ScholarPubMed
Yoshizawa, F (2004) Regulation of protein synthesis by branched-chain amino acids in vivo. Biochemical and Biophysical Research Communications 313, 417422.CrossRefGoogle ScholarPubMed
Zick, Y (2004) Uncoupling insulin signalling by serine/threonine phosphorylation: a molecular basis for insulin resistance. Biochemical Society Transactions 32, 812816.CrossRefGoogle ScholarPubMed