Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:45:59.130Z Has data issue: false hasContentIssue false

Spatial Sound Synthesis in Computer-Aided Composition*

Published online by Cambridge University Press:  25 October 2010

Marlon Schumacher*
Affiliation:
IDMIL – DCS – CIRMMT, Schulich School of Music of McGill University, 555 Sherbrooke St West, Montreal, QC, Canada E-mail: marlon.schumacher@music.mcgill.ca
Jean Bresson*
Affiliation:
IRCAM – CNRS UMR STMS, 1, place I. Stravinsky, 75002 Paris, France E-mail: jean.bresson@ircam.fr

Abstract

In this article we describe our ongoing research and development efforts towards integrating the control of sound spatialisation in computer-aided composition. Most commonly, the process of sound spatialisation is separated from the world of symbolic computation. We propose a model in which spatial sound rendering is regarded as a subset of sound synthesis, and spatial parameters are treated as abstract musical materials within a global compositional framework. The library OMPrisma is presented, which implements a generic system for the control of spatial sound synthesis in the computer-aided composition environment OpenMusic.

Type
Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agon, C. 1998. OpenMusic: un langage de programmation visuelle pour la composition musicale. PhD thesis, Université Pierre et Marie Curie, Paris 6, France.Google Scholar
Agon, C., Stroppa, M., Assayag, G. 2000. High Level Musical Control of Sound Synthesis in OpenMusic. Proceedings of the International Computer Music Conference, Berlin, Germany.Google Scholar
Agon, C., Assayag, G., Bresson, J. (eds.) 2006. The OM Composer’s Book 1. Paris: Editons Delatour/IRCAM.Google Scholar
Assayag, G. 1998. Computer Assisted Composition Today. First Symposium on Music and Computers. Corfu, Greece.Google Scholar
Assayag, G., Rueda, C., Laurson, M., Agon, C., Delerue, O. 1999. Computer Assisted Composition at IRCAM: From PatchWork to OpenMusic. Computer Music Journal 23(3): 5972.CrossRefGoogle Scholar
Berkhout, A.J., de Vries, D., Vogel, P. 1993. Acoustic Control by Wave Field Synthesis. Journal of the Acoustical Society of America 93: 2,7642778.CrossRefGoogle Scholar
Blauert, J. 1983. Spatial Hearing. Cambridge, MA: The MIT Press.Google Scholar
Boulanger, R. (ed.) 2000. The Csound Book. Perspectives in Software Synthesis, Sound Design, Signal Processing and Programming. Cambridge, MA: The MIT Press.Google Scholar
Braasch, J. 2005. A Loudspeaker-Based 3D Sound Projection using Virtual Microphone Control (ViMiC). 118th Convention of the Audio Engineering Society. Barcelona, Spain.Google Scholar
Bresson, J. 2006. Sound Processing in OpenMusic. Proceedings of the International Conference on Digital Audio Effects (DAFx–06). Montreal, QC, Canada.Google Scholar
Bresson, J., Agon, C. 2007. Musical Representation of Sound in Computer-Aided Composition: A Visual Programming Framework. Journal of New Music Research 36(4): 251266.CrossRefGoogle Scholar
Bresson, J., Stroppa, M., Agon, C. 2007. Generation and Representation of Data and Events for the Control of Sound Synthesis. Proceedings of the Sound and Music Computing Conference (SMC’07), Lefkada, Greece.Google Scholar
Bresson, J., Agon, C., Assayag, G. (eds.) 2008. The OM Composer’s Book 2. Paris: Editons Delatour/IRCAM.Google Scholar
Bresson, J., Agon, C., Schumacher, M. 2010. Représentation des données de contrôle pour la spatialisation dans OpenMusic. Actes des Journées d’Informatique Musicale, Rennes, France.Google Scholar
Cabaud, B., Pottier, L. 2002. Le contrôle de la spatialisation multi-sources: Nouvelles fonctionnalités dans Holophon version 2.2. Actes des Journées d’Informatique Musicale, Marseille, France.Google Scholar
Daniel, J. 2001. Représentation de champs acoustiques, applications à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimedia. PhD thesis, Université Pierre et Marie Curie, Paris 6, France.Google Scholar
Daniel, J. 2003. Spatial Sound Encoding Including Near Field Effect: Introducing Distance Coding Filters and a Viable New Ambisonic Format. 23rd International Conference: Signal Processing in Audio Recording and Reproduction, Denmark.Google Scholar
Delerue, O. 2004. Spatialisation du son et programmation par contraintes: Le système MusicSpace. PhD thesis, Université Pierre et Marie Curie, Paris 6, France.Google Scholar
Delerue, O., Agon, C. 1999. OpenMusic+MusicSpace=OpenSpace. Actes des Journées d’Informatique Musicale, Issy-les-Moulineaux, France.Google Scholar
Gabriel, R.P., White, J.L., Bobrow, D.G. 1991. CLOS: Integrating object-oriented and functional programming. Communications of the ACM 34(9): 2938.CrossRefGoogle Scholar
Geier, M., Ahrens, J., Spors, S. 2008. The SoundScape Renderer: A Unified Spatial Audio Reproduction Framework for Arbitrary Rendering Methods. AES 124th Convention. Amsterdam, The Netherlands.Google Scholar
Harley, M.A. 1994. Space and Spatialization in Contemporary Music: History and Analysis, Ideas and Implementations. PhD dissertation, McGill University, Montreal, Canada.Google Scholar
Harley, M.A. 1998. Spatiality of Sound and Stream Segregation in Twentieth Century Instrumental Music. Organised Sound 3(2): 147166.CrossRefGoogle Scholar
Jot, J.-M., Warusfel, O. 1995. A Real-Time Spatial Sound Processor for Music and Virtual Reality Applications. Proceedings of International Computer Music Conference. Banff, Canada.Google Scholar
Kendall, G.S., Peters, N., Geier, M. 2008. Towards an Interchange Format for Spatial Audio Scenes. Proceedings of the International Computer Music Conference. Belfast, Ireland.Google Scholar
Kim-Boyle, D. 2008. Spectral Spatialization: An Overview. Proceedings of the International Computer Music Conference. Belfast, Ireland.Google Scholar
Lazzarini, V. 2005. Extensions to the Csound Language: From User-Defined to Plugin Opcodes and Beyond. Proceedings of the 3rd Linux Audio Developer’s Conference. Karlsruhe, Germany.Google Scholar
Lindemann, E., Starkier, M., Dechelle, F. 1990. The IRCAM Musical Workstation: Hardware Overview and Signal Processing Features. Proceedings of the International Computer Music Conference. Glasgow, UK.CrossRefGoogle Scholar
Lossius, T. 2007. Sound Space Body: Reflections on Artistic Practice. PhD thesis, Bergen National Academy of the Arts.Google Scholar
Marshall, M.T., Malloch, J., Wanderley, M.M. 2007. Gesture Control of Sound Spatialization for Live Musical Performance. Gesture-Based Human-Computer Interaction and Simulation: 7th International Gesture Workshop, Lisbon, Portugal.Google Scholar
McCartney, J. 2002. Rethinking the Computer Music Language: SuperCollider. Computer Music Journal 26(4): 6168.CrossRefGoogle Scholar
McLeran, A., Roads, C., Sturm, B.L., Shynk, J.J. 2008. Granular Sound Spatialisation using Dictionary-Based Methods. Proceedings of the Sound and Music Computing Conference, Berlin, Germany.Google Scholar
Menzies, D. 2002. W-panning and O-format, Tools for Object Spatialisation. AES 22nd International Conference of Virtual, Synthetic and Entertainment Audio. Espoo, Finland.Google Scholar
Moore, F.R. 1983. A General Model for Spatial Processing of Sounds. Computer Music Journal 7(6): 615.CrossRefGoogle Scholar
Nouno, G., Agon, C. 2002. Contrôle de la spatialisation comme parametre musical. Actes des Journées d’Informatique Musicale. Marseille, France.Google Scholar
Pachet, F., Delerue, O. 1998. MidiSpace: A Temporal Constraint-based Music Spatializer. ACM Multimedia Conference. Bristol, UK.CrossRefGoogle Scholar
Pachet, F., Delerue, O. 2000. On-the-fly Multi Track Mixing. AES 109th Convention. Los Angeles, USA.Google Scholar
Peters, N., Ferguson, S., McAdams, S. 2007. Towards a Spatial Sound Description Interchange Format (SpatDIF). Canadian Acoustics 35(3): 6465.Google Scholar
Peters, N., Lossius, T., Schacher, J., Baltazar, P., Bascou, C., Place, T. 2009. A Stratified Approach for Sound Spatialization. Proceedings of the Sound and Music Computing Conference. Porto, Portugal.Google Scholar
Place, T., Lossius, T. 2006. Jamoma: A Modular Standard for Structuring Patches in Max. Proceedings of the International Computer Music Conference. New Orleans, USA.Google Scholar
Pottier, L. 1998. Dynamical Spatialisation of Sound. HOLOPHON: A Graphical and Algorithmical Editor for Σ1. Proceedings of the International Conference on Digital Audio Effects (DAFx-98). Barcelona, Spain.Google Scholar
Puckette, M. 1991. Combining Event and Signal in the MAX Graphical Programming Environment. Computer Music Journal 15(3): 6877.CrossRefGoogle Scholar
Puckette, M. 1996. PureData: Another Integrated Computer Music Environment. Proceedings of the 2nd Intercollege Computer Music Concerts. Tachikawa, Japan.Google Scholar
Pulkki, V. 1997. Virtual Sound Source Positioning Using Vector Base Amplitude Panning. Journal of the Audio Engineering Society 45(6): 456466.Google Scholar
Pulkki, V. 1999. Uniform Spreading of Amplitude Panned Virtual Sources. Proceedings of the 1999 IEEE Workshop Proceedings on Applications of Signal Processing to Audio and Acoustics. New Paltz, USA.Google Scholar
Ramakrishnan, C., Goßmann, J., Brümmer, L. 2006. The ZKM Klagdom. Proceedings of the Conference on New Interfaces for Musical Expression. Paris, France.Google Scholar
Reynolds, C.W. 1987. Flocks, Herds and Schools: A Distributed Behavioral Model. SIGGRAPH Computer. Graphics 21(4): 2534.CrossRefGoogle Scholar
Roads, C. 2001. Microsound. Cambridge, MA: The MIT Press.Google Scholar
Schacher, J.C., Kocher, P. 2006. Ambisonics Spatialisation Tools for Max/MSP. Proceedings of the International Computer Music Conference. New Orleans, USA.Google Scholar
Schumacher, M., Bresson, J. 2010. Compositional Control of Periphonic Sound Spatialization. Proceedings of the International Symposium on Ambisonics and Spherical Acoustics. Paris, France.Google Scholar
Stockhausen, K. 1989. Stockhausen on Music: Lectures and Interviews. Compiled by Robin Maconie. London: Marion Boyars.Google Scholar
Stroppa, M. 2000. Paradigms for the High Level Musical Control of Digital Signal Processing. Proceedings of the International Conference on Digital Audio Effects (DAFx-00). Verona, Italy.Google Scholar
Todoroff, T., Traube, C., Ledent, J.-M. 1997. NeXTSTEP Graphical Interfaces to Control Sound Processing and Spatialization Instruments. Proceedings of the International Computer Music Conference. Thessaloniki, Greece.Google Scholar
Topper, D., Burtner, M., Serafin, S. 2002. Spatio-Operational Spectral (S.O.S.) Synthesis. Proceedings of the International Conference on Digital Audio Effects (DAFx-02). Hamburg, Germany.Google Scholar
Torchia, R.H., Lippe, C. 2004. Techniques for Multi-Channel Real-Time Spatial Distribution using Frequency-Domain Processing. Proceedings of the Conference on New Interfaces for Musical Expression. Hamamatsu, Shizuoka, Japan.Google Scholar
Verfaille, V., Zolzer, U., Arfib, D. 2006. Adaptive Digital Audio Effects (A-DAFx): A New Class of Sound Transformations. IEEE Transactions on Audio Speech, and Language Processing 14(5): 1,8171831.CrossRefGoogle Scholar
Warusfel, O., Misdariis, O. 2001. Directivity Synthesis with a 3D Array of Loudspeakers, Application for Stage Performance. Proceedings of the International Conference on Digital Audio Effects (DAFx-01). Limerick, Ireland.Google Scholar
Wilson, S. 2008. Spatial Swarm Granulation. Proceedings of the International Computer Music Conference. Belfast, Ireland.Google Scholar
Wright, M. 2005. Open Sound Control: An Enabling Technology for Musical Networking. Organised Sound 10(3): 193200.CrossRefGoogle Scholar