Herpetologists have been aware that something is wrong with amphibian populations for over three decades. The identification of another lethal pathogen (Martel et al., Reference Martel, Blooi, Adriaensen, Van Rooij, Beukema and Fisher2014) and the lack of an immediate response is a grim reminder of the bleak outlook for this group of animals. Broad-scale assessments have quantified what we've suspected for > 20 years (i.e. > 32.5% of amphibians are at risk, Stuart et al., Reference Stuart, Chanson, Cox, Young, Rodrigues, Fischman and Waller2004; and the number of amphibian populations in the USA is declining by 3.7% per year on average, including species of Least Concern, Adams et al., Reference Adams, Miller, Muths, Corn, Campbell Grant and Bailey2013). Since 2005 > 320 peer-reviewed studies on amphibian disease have been published (based on a search in Google Scholar on 5 December 2014). Scientists and managers have addressed meetings, symposia, congressional briefings and world congresses and opined on this catastrophe of global proportions. Legitimate connections between the plight of amphibians, humans and ecosystem health have been established (e.g. Welsh & Ollivier, Reference Welsh and Ollivier1998) and researchers have demonstrated that global amphibian decline is more than an esoteric research project. We know that a variety of causes act individually, and probably synergistically, at local scales. Despite the severity of the situation and our lack of progress we have, however, made decisions to forgo action and to continue with a business as usual approach. There have, however, been small-scale successes and some useful international efforts. The Amphibian Specialist Group and the Global Amphibian Assessment collaboration between IUCN and other entities (Stuart et al., Reference Stuart, Chanson, Cox, Young, Rodrigues, Fischman and Waller2004) have made a concerted effort to quantify the situation and offer solutions; for example, an emergency response to immediate crises is included as a necessary mode of intervention in the Amphibian Conservation Action Plan (Gascon et al., Reference Gascon, Collins, Moore, Church, McKay and Mendelson2007).
The Action Plan provides a cogent road map but its approach is mostly academic and lacks a mechanism for implementing the required response. The Amphibian Survival Alliance is working to implement themes from the Action Plan, but although it provides leadership (Bishop et al., Reference Bishop, Angulo, Lewis, Moore, Rabb and Garcia Moreno2012) it has no authority. If the situation is dire and deteriorating, then we should respond appropriately. What is missing among scientists, and in society, is an appropriate mechanism to address the problem of amphibian declines. We recognize that stop-gap measures, including the Amphibian Ark programme and other hands-on activities by zoos and resource agencies, have been initiated (e.g. Gagliardo et al., Reference Gagliardo, Crump, Griffith, Mendelson, Ross and Zippel2008) but perhaps we have arrived at a watershed moment that requires radical change and broadening of scope.
International approaches to conservation are not unprecedented. The premier example of global buy-in and cooperation in conservation is the International Union for Conservation of Nature (IUCN), which was established in 1948 and has a global membership of > 1,000 government and non-government organizations. Its mandate includes finding pragmatic solutions to environmental challenges, supporting research, and facilitating development and implementation of policy. The reputation of this organization and its commitment to such projects as the Global Amphibian Assessment (Gascon et al., Reference Gascon, Collins, Moore, Church, McKay and Mendelson2007) are influential; however, IUCN has no authority to enforce standards or actions (Bennett, Reference Bennett2011).
The International Whaling Commission, established in 1946, is another example of an international approach to a global issue. Yet despite international cooperation and decades of work it is likely that the Yangtze River dolphin Lipotes vexillifer has gone extinct, as efforts to prevent extinction in this unique mammal, implemented by various entities, were not effective (Turvey et al., Reference Turvey, Pitman, Taylor, Barlow, Akamatsu and Barett2007). A similar lack of accelerated response and management presage the likely extinction of the vaquita Phocoena sinus (another marine mammal, which has been declining for decades) by 2018 (Morell, Reference Morell2014).
A final example of international cooperation is the Convention on Biological Diversity, initiated in 1993. By 2002 > 100 governments had committed to reducing the rate of loss of biodiversity (Balmford et al., Reference Balmford, Crane, Dobson, Green and Mace2005). This effort may be the most cohesive from the global community, formulating specific targets and identifying mechanisms for implementation (CBD, 2015), but efforts are limited by a variety of obstacles (e.g. Puppim de Oliveira et al., Reference Puppim de Oliveira, Balaban, Doll, Moreno-Peñaranda, Gasparatos, Iossifova and Suwa2011). These examples suggest systemic failures in the response of the global community to broad-scale conservation issues, and illustrate an alarming pattern: even when threatened species or landscapes are identified, if intervention follows traditional pathways the results are arguably ineffectual (Martin et al., Reference Martin, Nally, Burbidge, Arnall, Garnett and Hayward2012).
Radical means different from standard procedure, departing from historical precedent. We provide a radical prescription from re-examination of academic- and management-oriented responses to the biodiversity crisis. The feasibility of our suggestion is debatable, but our point is that radically different approaches are necessary to effectively manage the largest extinction event in modern history (Wake & Vredenburg, Reference Wake, D.B. & Vredenburg2008) and that timely actions are typically delayed by political indecision, scientific disagreement, lack of funding or lack of basic knowledge (Fisher & Ineich, Reference Fisher and Ineich2012). We present not the answer but an alternative strategy to facilitate rapid action in time-sensitive circumstances. Our intention is to encourage an immediate conversation that will address the impediments to the execution of timely conservation actions.
In a crisis such as a large-scale nuclear disaster governments would not measure radioactivity levels at randomly selected sites to determine exposure risk, then collect samples from a subset of citizens to determine statistically if the population was threatened. Instead, the National Incident Management System and Incident Command System would be implemented. The Incident Command System has been used widely; for example, for natural disasters, the crash of Space Shuttle Columbia, and management of exotic Newcastle disease. It is a concept of incident management standardized for use across involved entities. The system has flexibility in controlling personnel, equipment and communications, thus matching the complexity of the incident without being hindered by jurisdictional boundaries (Bigley & Roberts, Reference Bigley and Roberts2001; Walsh et al., Reference Walsh, Christen, Callsen, Miller, Maniscalco, Lord and Dolan2011), and its teams are interdisciplinary, a feature critical to disaster management and already embedded in research on amphibians.
The Incident Command System, with its simple goals of clear communication, efficient resource use, and accountability, is now a common approach for incidents ranging from terrorist attacks to natural disasters. The system is used widely in the UK and the USA, with similar systems in New Zealand (Coordinated Incident Management System), Australia (Australasian Inter-Service Incident Management System), Canada (British Columbia Emergency Response Management System) and South-east Asia (Fakhruddin, Reference Fakhruddin2006; USAID, 2006). The United Nations has recommended the Incident Command System as an international standard.
The system was precipitated by the California wildfires in 1970, when > 200,000 ha burned in < 2 weeks (FEMA, 2001; EMI, 2013) and the post-hoc assessment revealed that it was not a lack of resources to combat the fire but a lack of adequate management of those resources that precluded an effective response (Keeley et al., Reference Keeley, Fotheringham and Moritz2004). Similarly, we can argue that it is not a lack of resources (knowledge) that precludes progress in stemming amphibian declines, but a lack of cohesive management of the available resources. Fire management in the western USA and the history of the Incident Command System suggest that this system facilitates rapid response to crises and deals simultaneously with different situations on multiple fronts (Keeley et al., Reference Keeley, Fotheringham and Moritz2004). This approach is designed to make decisions and act on them quickly, correcting mistakes adaptively. A similar type of framework could be used by an international team of scientists with the authority to make difficult decisions regarding amphibian management on a global scale (sensu the Endangered Species Committee or so-called God Squad of the U.S. Fish and Wildlife Service; Abrams et al., Reference Abrams, Goldfarb, Graham and Plater1998). Such a paradigm shift would facilitate decision making unencumbered by intra- and international squabbling, slow scientific debates, and bureaucracy, and replace the current ineffective strategy.
Amphibian declines can be viewed as a disaster occurring on multiple fronts. One of these fronts is disease. The identification of Batrachochytrium salamandrivorans (Bsal) in Europe (Martel et al., Reference Martel, Blooi, Adriaensen, Van Rooij, Beukema and Fisher2014; Yap et al., Reference Yap, Koo, Ambrose, Wake and Vredenburg2015), and the threat this infectious and lethal fungus poses to salamanders in the USA, is an example of where an Incident Command System approach could be applied.
The greatest diversity of salamanders exists in the USA, and Bsal, although not yet detected there, is an immediate concern because of the importation of amphibians: Schloegel et al. (Reference Schloegel, Picco, Kilpatrick, Davies, Hyatt and Daszak2009) reported that 28 million amphibians were imported into the USA during a 6-year period, many from Asia, where Bsal originated (Martel et al., Reference Martel, Blooi, Adriaensen, Van Rooij, Beukema and Fisher2014). This situation requires an organized response to determine whether or not Bsal exists in the USA, adequate sampling design and strategies, and development of appropriate responses. The situation also provides an ideal test case for the implementation of an Incident Command System-type strategy. Although efforts have been mounted on multiple fronts by a variety of government, private and NGO entities, there is no cohesive strategy or chain of command to organize the efforts, facilitate decisions or implement actions (but see Grant et al., Reference Grant, Muths, Katz, Canessa, Adams and Ballard2015).
Such a paradigm shift would put decision making power into the hands of a few, but with the advantages of a coordinated effort. The proposed system is modular, with specific objectives determining the size and subdivision of functional elements, which is essential in responding to multiple crises at various scales. In the case of amphibian decline, specific objectives have already been proposed (Gascon et al., Reference Gascon, Collins, Moore, Church, McKay and Mendelson2007). A coordinated effort, using this type of hierarchy would also facilitate triage efforts (sensu Yang et al., Reference Yang, Bruford, Wei and Zhou2006).
If conventional methods are falling short, a radical shift to an Incident Command System-type effort is worth considering. Taking action will result in errors of commission but we are beyond the point where errors of omission are acceptable. We don't presume to set forth objectives or priorities but we hope that the immediate opportunity offered by the impending Bsal epidemic and our alternative strategy will be considered before amphibian conservation decisions are reduced to academic arguments.
Acknowledgements
K. Close and A.D. Tucker provided useful comments. This is contribution number 518 of the U.S. Geological Survey Amphibian Research and Monitoring Initiative, and a product of the John Wesley Powell Center for Analysis and Synthesis Amphibian Working Group. Use of trade, product, or firm names are descriptive and do not imply endorsement by the U.S. Government.
Biographical sketches
Erin Muths has studied declining amphibians for > 20 years, focusing on demography and disease in mountain ecosystems and endangered species. Robert Fisher has studied amphibians for 25 years, with work ranging from genetics to invasive species management. Both scientists are involved in the U.S. Geological Survey's Amphibian Research and Monitoring Initiative, where they lead research on amphibians and amphibian decline issues in their regions.