Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:52:05.282Z Has data issue: false hasContentIssue false

Beginnings of biospheric evolution and their biogeochemical consequences

Published online by Cambridge University Press:  08 April 2016

Preston Cloud*
Affiliation:
United States Geological Survey and Department of Geological Sciences, University of California; Santa Barbara, California 93106

Abstract

The beginnings of biospheric evolution had far-reaching biogeochemical consequences for the related evolutions of atmosphere, hydrosphere, and lithosphere. Feedback to the sedimentary record from these several simultaneously interacting aspects of crustal evolution provides the evidence from which historical biogeology is reconstructed. The interpretation of that evidence, however, is beset with pitfalls. Both biogenicity and a primary origin need to be demonstrated, or confidence limits established for each supposed morphological and biochemical fossil. Relevance to biospheric or related evolutions must be critically evaluated for every geochemical and sedimentological anomaly.

Indirect evidence suggests primitive, oxygen-generating autotrophy by ∼ 3.8 × 109 years ago (3.8 Gyr or gigayears), while free O2 first began to accumulate only ∼ 2 Gyr ago. Various reduced substances in the atmosphere and in solution functioned as oxygen sinks, keeping photolytic and biogenic O2 at levels tolerable by primitive anaerobic and microaerophilic procaryotes.

The oldest demonstrably biogenic and certainly primary microstructures are procaryotes from ∼ or > 2 Gyr old strata around Lake Superior. Improved biologic O2 mediation, continued carbon segregation, and filling of O2 sinks initiated atmospheric O2 buildup, leading to an ozone screen ∼ or < 2 Gyr ago. Consequences were essential termination of banded iron formation, onset of red beds, and O2 shielding of anaerobic intracellular processes, heralding the eucaryotic cell.

Probable eucaryotes appear in ∼ 1.3 Gyr old rocks in California as large unicells and large-diameter, branched, septate filaments. Likely consequences of eucaryotic evolution were increased atmospheric O2, increased carbonate and sulfate ion, and the rise of sexuality. Meiosis had definitely evolved > 0.7 Gyr ago and probably > 1.3 Gyr ago, perhaps simultaneously with the mitosing cell. Whatever the timing, it completed the evolution of the eucaryotic heredity mechanism and foreshadowed (given sufficient free O2) the differentiation of tissues, organs, and advanced forms of life—with all their potential for biogeochemical feedback to sedimentary, diagenetic, and metallogenic processes. The first Metazoa appeared ∼ 0.7 Gyr ago. Being dependent on simple diffusion for O2, they lacked exoskeletons. The latter appeared, perhaps 0.6 Gyr ago, when increasing O2 levels favored the emergence of more advanced respiratory systems.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ainsworth, G. C., Sparrow, F. K., and Sussman, A. S., eds. 1973. The Fungi. Vol. IV A. 621 pp. Academic Press.Google Scholar
Alsopp, A. 1969. Phylogenetic relationships of the Procaryota and the origin of the eucaryotic cell. New Phytol. 68:591612.CrossRefGoogle Scholar
Anderson, M. M. 1972. A possible time span for the late Precambrian of the Avalon Peninsula, southeastern Newfoundland in the light of worldwide correlation of fossils, tillites, and rock units within the succession. Can. J. Earth Sci. 9:17101726.Google Scholar
Anderson, M. M. and Misra, S. B. 1969. Fossils found in the pre-Cambrian Conception Group of southeastern Newfoundland. Nature. 220:680681.CrossRefGoogle Scholar
Aswathanarayana, V. 1968. Metamorphic chronology of the Precambrian provinces of South India. Can. J. Earth Sci. 5:591601.CrossRefGoogle Scholar
Banin, A. and Navrot, J. 1975. Origin of life: Clues from relations between chemical compositions of living organisms and natural environments. Science. 189:550551.CrossRefGoogle ScholarPubMed
Banks, H. P. 1970. Evolution and plants of the Past. 170 pp. Wadsworth Publ. Co., Inc.Google Scholar
Barghoorn, E. S. and Schopf, J. W. 1966. Microorganisms three billion years old from the Precambrian of South Africa. Science. 152:758764.CrossRefGoogle ScholarPubMed
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science. 147:563577.Google Scholar
Becker, R. H. and Clayton, R. N. 1972. Carbon isotopic evidence for the origin of a banded iron-formation in Western Australia. Geochim. et Cosmochim. Acta. 36:577595.Google Scholar
Berkner, L. V. and Marshall, L. C. 1964. The history of oxygenic concentration in the earth's atmosphere. Discuss. Faraday Soc. 37:122141.CrossRefGoogle Scholar
Bernal, J. G. 1967. The Origin of Life. 345 pp. World Publishing Co.; Cleveland and New York.Google Scholar
Bickle, M. J., Martin, A., and Nisbet, E. G. 1975. Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia. Earth & Planet. Sci. Lett. 27:155162.CrossRefGoogle Scholar
Bradley, W. H. 1962. Chloroplast in Spirogyra from the Green River Formation of Wyoming. Am. J. Sci. 260:455459.CrossRefGoogle Scholar
Broda, E. 1970. The evolution of bioenergetic processes. Prog. in Biophys. and Molec. Biol. 21:145208.Google Scholar
Broecker, W. S. 1970. A boundary condition on the evolution of atmospheric oxygen. J. Geophys. Res. 75:35533557.CrossRefGoogle Scholar
Brooks, J. and Shaw, G. 1973. Origin and Development of Living Systems. 412 pp. Academic Press.Google Scholar
Brown, M. R. and Bold, H. C. 1964. Comparative studies of the algal genera Tetracystis and Chlorococcum. Phycol. Stud., Univ. of Tex. Publ. no. 6417. 213 pp.Google Scholar
Burger, A. I. and Coertze, F. J. 1973. Radiometric age measurements in rocks from southern Africa to the end of 1971. South Afr. Geol. Surv. Bull. 58:146.Google Scholar
Cairns-Smith, G. 1972. The life puzzle: (On crystals and organisms and on the possibility of a crystal as an ancestor). 165 pp. Univ. of Toronto Press; Toronto, Canada.Google Scholar
Calder, J. A. and Parker, P. L. 1973. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. et Cosmochim. Acta. 37:133140.CrossRefGoogle Scholar
Calvin, M. 1975. Chemical evolution. Am. Sci. 63:169177.Google ScholarPubMed
Carr, N. G. and Whitton, B. A., eds. 1973. The biology of blue green algae. Univ. Calif., Botan. Monogr. 9:1676.Google Scholar
Cavalier-Smith, T. 1975. The origin of nuclei and of eucaryotic cells. Nature. 256:463468.Google Scholar
Chang, L. M. S. 1976. Phylogeny of DNA polymerase-β. Science. 191:11831185.Google Scholar
Chatton, E. 1938. Titres et Travaux Scientifiques de Edouard Chatton 1906–1937. 405 pp. Imprimerie E. Sottano, Sete, Paris.Google Scholar
Cloud, P. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution. 2:322350.CrossRefGoogle ScholarPubMed
Cloud, P. 1965. Significance of the Gunflint (Precambrian) microflora. Science. 148:2745.CrossRefGoogle ScholarPubMed
Cloud, P. 1968a. Atmospheric and hydrospheric evolution on the primitive earth. Science. 160:729736.Google Scholar
Cloud, P. 1968b. Pre-metazoan evolution and the origins of the Metazoa. In: Drake, E. T., ed. Evolution and Environment. 72 pp. Yale Univ. Press; New Haven, Conn.Google Scholar
Cloud, P. 1972. A working model of the primitive earth. Am. J. Sci. 272:537548.CrossRefGoogle Scholar
Cloud, P. 1973a. Paleoecological significance of the banded iron formation. Econ. Geol. 68:11351143.Google Scholar
Cloud, P. 1973b. Some early microbiotas and their bearing on the evolution of the primitive earth. pp. 9194. In: Neishtadt, M. I., ed. Akad. Nauk. USSR, Proc. 3rd Int. Palynol. Cong., Probl. of Palynol.Google Scholar
Cloud, P. 1974a. Evolution of ecosystems. Am. Sci. 62:5466.Google Scholar
Cloud, P. 1974b. Dating the beginnings of photosynthesis (response to a critique by E. S. Barghoorn, I. H. Troughton, and L. Margulis). Am. Sci. 62:389390.Google Scholar
Cloud, P. 1976. Major features of crustal evolution. Geol. Soc. South Afr. Trans. Annexure to Vol. 79, 32 pp.Google Scholar
Cloud, P. and Abelson, P. H. 1961. Woodring conference on major biologic innovations and the geologic record. Proc. Natl. Acad. Sci. 47:17051712.Google Scholar
Cloud, P., Gruner, J. W., and Hagen, H. 1965. Carbonaceous rocks of the Soudan Iron Formation (Early Precambrian). Science. 148:17131716.CrossRefGoogle ScholarPubMed
Cloud, P. and Hagen, H. 1965. Electron microscopy of the Gunflint microflora: Preliminary results. Proc. Natl. Acad. Sci. 54:18.Google Scholar
Cloud, P. and Licari, G. R. 1968a. Microbiotas of the banded iron formations. Proc. Natl. Acad. Sci. 61:779786.Google Scholar
Cloud, P. and Licari, G. R. 1968b. Morphological criteria for biogeochemical processes. Abstracts, Geol. Soc. Am. Annu. Meet. (Mexico City), 11–13 Nov. p. 57.Google Scholar
Cloud, P., Licari, G. R., Wright, L. A., and Troxel, B. W. 1969. Proterozoic eucaryotes from eastern California. Proc. Natl. Acad. Sci. 62:623631.Google Scholar
Cloud, P. and Semikhatov, M. A. 1969. Proterozoic stromatolite zonation. Am. J. Sci. 267:10171061.CrossRefGoogle Scholar
Cloud, P., Moorman, M., and Pierce, D. 1975. Sporulation and ultrastructure in a late Proterozoic cyanophyte: some implications for taxonomy and plant phylogeny. Q. Rev. Biol. 50:131150.Google Scholar
Cloud, P., Wright, J., and Glover, L. III. 1976. Traces of animal life from 620 m.y. old rocks in North Carolina. Am. Sci. 64:396406.Google Scholar
Cowie, J. W. and Rosanov, A. Yu. 1973. Account of the International Working Group of a Symposium on the problem of the Cambrian-Precambrian boundary. Izvestia Akad. Nauk. USSR, Geol. Ser. 12:7282.Google Scholar
Crawford, A. R. 1969. India, Ceylon and Pakistan. New age data and comparisons with Australia. Nature. 223:380384.Google Scholar
Darby, D. G. 1974. Reproductive modes of Huriospora microreticulata from cherts of the Precambrian Gunflint Iron-Formation. Geol. Soc. Am. Bull. 85:15951596.Google Scholar
Davies, R. D., Allsopp, H. L., Erlank, A. J., and Manton, W. I. 1970. Sr-isotope studies on various layered mafic intrusions in southern Africa. Geol. Soc. South Afr. Spec. Publ. 1, pp. 576593.Google Scholar
Dickens, F. and Neil, E., eds. 1964. Oxygen in the animal organism. 694 pp. Int. Union Biochem., Symp. Ser. Vol. 31 (with Int. Union Physiolog. Sci. at London 1963). Pergamon Press, The Macmillan Co.Google Scholar
Drouet, F. and Daily, W. A. 1956. Revision of the coccoid Myxophycae. Butler Univ. Stud. 12:1218.Google Scholar
Dunn, P. R., Plumb, K. A., and Roberts, H. G. 1966. A proposal for time-stratigraphic subdivision of the Australian Precambrian. Geol. Soc. Aust. J. 13:593608.CrossRefGoogle Scholar
Echlin, P. 1966. The blue-green algae. Sci. Am. 214:7481.Google Scholar
Edhorn, A-S. 1973. Further investigation of fossils from the Animikie, Thunder Bay, Ontario. Geol. Assoc. Can. Proc. 25:3766.Google Scholar
Evans, A. M., Ford, T. D., and Allen, I. R. L. 1968. Precambrian rocks. pp. 119. In: Sylvester-Bradley, P. C. and Ford, T. D., eds. The geology of the East Midlands. Leicester Univ. Press.Google Scholar
Feux, A. Z. and Baker, D. R. 1973. Stable carbon isotopes in selected granitic, mafic, and ultramafic igneous rocks. Geochim. et Cosmochim. Acta. 37:25092521.CrossRefGoogle Scholar
Ford, T. D. 1958. Precambrian fossils from Charnwood Forest. Proc. Yorkshire Geol. Soc. 31:pt. 3(8). pp. 211217.Google Scholar
Fox, S. W. and Yuyama, S. 1963. Abiotic production of primitive protein and formed microparticles. N.Y. Acad. Sci., Ann. 108:487494.CrossRefGoogle ScholarPubMed
Fridovich, I. 1975. Oxygen: boon and bane. Am. Sci. 63:5459.Google Scholar
Germs, G. B. 1972. New shelly fossils from the Nama Group, South West Africa. Am. J. Sci. 272:752761.Google Scholar
Germs, G. B. 1974. The Nama Group in South West Africa and its relationship to the Pan-African geosyncline. J. Geol. 82:301317.Google Scholar
Gerschman, R. 1962. The biological effects of increased oxygen tension. pp. 171179. In: Schaefer, K. E., ed. Man's Dependence on the Earthly Atmosphere. 416 pp.The Macmillan Co.Google Scholar
Gilbert, D. L. 1964. Atmosphere and evolution. pp. 641654. In: Dickens, F. and Neil, E., eds. Oxygen in the Animal Organism. 694 pp.Pergamon Press, The Macmillan Co.Google Scholar
Gilbert, D. L. 1972. Oxygen and life. Anesthesiology. 37:100111.CrossRefGoogle ScholarPubMed
Glaessner, M. F. 1966. Precambrian paleontology. Earth-Sci. Rev. 1:2950.Google Scholar
Glaessner, M. F. 1971. Geographic distribution and time range of the Ediacara Precambrian fauna. Geol. Soc. Am. Bull. 82:509514.Google Scholar
Glaessner, M. F. 1972. Precambrian paleozoology. Univ. Adelaide, Centre for Precambrian Res. Spec. Pap. No. 1, pp. 4352.Google Scholar
Glaessner, M. F. and Daily, B. 1959. The geology and late Precambrian fauna of the Ediacara fossil reserve. South Aust. Mus. Rec. 13:369401.Google Scholar
Gnilovskaya, M. B. 1971. Ancient aquatic plants of the Vendian from the Russian Platform (latest Precambrian) (in Russian). Paleontol. J. 3:101107.Google Scholar
Gowda, S. S. and Sreenivasa, T. N. 1969. Microfossils from the Archean Complex of Mysore. J. Geol. Soc. India. 10:201208.Google Scholar
Gray, J. and Boucot, A. J. 1971. Early Silurian spore tetrads from New York: Earliest new world evidence for vascular plants? Science. 173:918921.Google Scholar
Gray, J. and Boucot, A. J. 1972. Palynological evidence bearing on the Ordovician-Silurian para-conformity in Ohio. Geol. Sci. Am. Bull. 83:12991314.Google Scholar
Hallbauer, D. K. 1975. The plant origin of the Witwatersrand “carbon.” Min. Sci. Eng. 7:111131.Google Scholar
Hallbauer, D. K. and van Warmelo, K. T. 1974. Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambrian Res. 1:199212.CrossRefGoogle Scholar
Hawkesworth, C. I., Moorbath, S., O'Nions, R. K., and Wilson, I. E. 1975. Age relationships between greenstone belts and “granites” in the Rhodesian Archean craton. Earth and Planet. Sci. Lett. 25:251262.CrossRefGoogle Scholar
Hayaishi, O., ed. 1974. Topics in Molecular Oxygen Research. 367 pp. North-Holland Publ. Co. and American Elsevier Publ. Co.Google Scholar
Hirsch, P. 1974. The budding bacteria. Annu. Rev. Microbiol. 28:391444.Google Scholar
Hofmann, H. J. 1969. Attributes of stromatolites. Geol. Surv. Can. Pap. 69–39, 58 pp.Google Scholar
Hofmann, H. J. 1973. Stromatolites: Characteristics and utility. Earth-Sci. Rev. 9:339373.Google Scholar
Hofmann, H. J. and Jackson, G. D. 1969. Precambrian (Aphebian) microfossils from Belcher Islands, Hudson Bay. Can. J. Earth Sci. 6:11371144.Google Scholar
Huber-Pestalozzi, G. 1962. Das Phytoplankton des Susswassers: Die Binnengewasser. Vol. 16, pt. 2, Halfte 1, 365 pp. E. Schweizerbart'sche Verlags-buchhandlung; Stuttgart.Google Scholar
Hurley, P. M., Pinson, W. H. Jr., Nagy, B., and Teska, T. M. 1971. Ancient age of the Middle marker horizon, Onverwacht Group, Swaziland sequence, South Africa. Mass. Inst. Technol. 19th Annu. Prog. Rep. on USAEC Contract AT(30-1)-1381, M.I.T.-1381-19, pp. 14.Google Scholar
James, H. L. and Sims, P. K., eds. 1973. Precambrian iron-formations of the world. Econ. Geol. 68:9131179.Google Scholar
Kazmierczak, J. 1967. Devonian and modern relatives of the Precambrian Eosphaera: possible significance for the early eucaryotes. Lethaia. 9:3950.Google Scholar
Keller, V. M. 1959. Problems of the later Precambrian (in Russian). Priroda. 9:3038.Google Scholar
Keller, B. M., Aksenov, E. M., Korolev, B. G., Krylov, I. N., Rosanov, A. Yu., Semikhatov, M. A., and Chumakov, N. M. 1974. Vendomian (terminal Riphean) and its regional subdivisions (in Russian). All-Union Inst. Sci. Technol. Inf. USSR, Itorgi Nauk i Techniki. Stratig. Paleont. Ser. 5:1126.Google Scholar
Kevan, P. G., Chaloner, W. G., and Savile, D. B. O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology 18:391417.Google Scholar
Klein, R. M. 1970. Relationships between blue-green and red algae. pp. 623633. In: Frederick, J. T. and Klein, R. M., eds. Phylogenesis and Morphogenesis in the Algae. Ann. N.Y. Acad. Sci. 175:413–781.Google Scholar
Kline, G. L. 1975. Proterozoic budding bacteria from Australia and Canada. 92 pp. Master's Thesis, Univ. Calif., Santa Barbara, Calif.Google Scholar
Knoll, A. H. and Barghoorn, E. S. 1974. Ambient pyrite in Precambrian chert: new evidence and a theory. Proc. Natl. Acad. Sci. 71:23292331.Google Scholar
Knoll, A. H. and Barghoorn, E. S. 1975. Precambrian eucaryotic organisms: a reassessment of the evidence. Science. 190:5254.Google Scholar
Kolosov, P. N. 1975. Stratigraphy of the upper Precambrian of Southern Yakutia (in Russian). 156 pp. Inst. Geol. Akad. Nauk. USSR, Siberian Branch, Yakutian Affiliate.Google Scholar
Krylov, I. N. 1968. The earliest traces of life on earth (in Russian). Priroda. 11:4154.Google Scholar
Leventhal, J., Suess, S. E., and Cloud, P. 1975. Non-prevalence of biochemical fossils in kerogens from pre-Phanerozoic sediments. Proc. Natl. Acad. Sci. 72:47064710.Google Scholar
Licari, G. R. 1971. Paleontology of the Beck Spring Dolomite of Eastern California. 174 pp. Ph.D. Thesis, Univ. Calif., Los Angeles. (Done at the Biogeology Clean Laboratory, Univ. Calif., Santa Barbara).Google Scholar
Licari, G. R. and Cloud, P. 1968. Reproductive structures and taxonomic affinities of some nannofossils from the Gunflint Iron Formation. Proc. Natl. Acad. Sci. USA. 59:10531060.Google Scholar
Licari, G. R., Cloud, P., and Smith, W. D. 1969. A new chroococcacean alga from the Proterozoic of Queensland. Proc. Natl. Acad. Sci. 62:5662.Google Scholar
Licari, G. R. and Cloud, P. 1972. Procaryotic algae associated with Australian Proterozoic stromatolites. Proc. Natl. Acad. Sci. USA. 69:25002504.Google Scholar
Lovering, T. S. 1959. Geological significance of accumulator plants in rock weathering. Geol. Soc. Am. Bull. 70:781800.Google Scholar
Macgregor, A. M. 1941. A pre-Cambrian algal limestone in Southern Rhodesia. Geol. Soc. South Afr. Trans. 43:916.Google Scholar
MacGregor, I. M., Trusswell, I. F., and Eriksson, K. A. 1974. Filamentous algae from the 2,300 m.y. old Transvaal Dolomite. Nature. 247:538540.Google Scholar
Margulis, L. 1970. Origin of Eucaryotic Cells. 349 pp. Yale Univ. Press; New Haven, Conn.Google Scholar
Marshall, C. G. A., May, J. W., and Perret, C. J. 1964. Fossil microorganisms: possible presence in Precambrian shield of Western Australia. Science. 144:290292.Google Scholar
Martin, G. W. 1968. The origin and status of fungi (with a note on the fossil record). pp. 635648. In: Ainsworth, G. C. and Sussman, A. S., eds. The Fungi: An Advanced Treatise. Vol. 3. 738 pp.Academic Press.Google Scholar
Mason, T. R. and von Brunn, V.in press. 3.0 G.y. old stromatolites from South Africa. Nature.Google Scholar
McCord, I. M., Keele, B. B. Jr., and Fridovich, I. 1971. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. 68:10241027.Google Scholar
Mereschkowsky, C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25:593604.Google Scholar
Milton, D. J. 1966. Drifting organisms in the Precambrian sea. Science. 153:293294.Google Scholar
Moorbath, S., O'Nions, R. K., and Pankhurst, R. J. 1973. Early Archean age for the Isua iron formation, West Greenland. Nature. 245:138139.Google Scholar
Moorman, M. 1974. Microbiota of the late Proterozoic Hector Formation, Southwestern Alberta, Canada. J. Paleontol. 48:524539.Google Scholar
Muir, M. D. 1974. X-ray microanalysis in the SEM for the determination of elements in modern and fossil micro-organisms. Eighth Int. Congr. on Electron Microsc. Canberra, 1974. 2:104105.Google Scholar
Nagy, L. A. 1974. Transvaal stromatolite; first evidence for the diversification of cells about 2.2 × 109 years ago. Science. 183:514516.CrossRefGoogle ScholarPubMed
Nicolaysen, L. O., de Villiers, J. W. L., Burger, A. J., and Strelow, F. W. E. 1958. New measurements relating to the absolute age of the Transvaal System and of the Bushveld Igneous Complex. Geol. Soc. South Afr. Trans. 61:137168.Google Scholar
Oberlies, F. and Prashnowsky, A. A. 1968. Biogeochemische und elektronenmikroskopische Untersuchung präkambrischer Gesteine. Die Naturwissenschaften. 1:2528.Google Scholar
Oehler, D. Z. 1976. Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs formation of Australia: Techniques and survey of preserved ultrastructure. J. Paleontol. 50:90106.Google Scholar
Oehler, D. Z., Schopf, J. W., and Kvenvolden, K. A. 1972. Carbon isotope studies of organic matter in Precambrian rocks. Science. 175:12461248.Google Scholar
Oehler, J. H., Oehler, D. Z., and Muir, M. D. 1976. On the significance of tetrahedral tetrads of Precambrian algal cells. Precambrian Res. 4:In Press.Google Scholar
Perfil'ev, B. A., Gabe, D. R., Gal'perina, A. M., Rabinovich, V. A., Sapotnitskii, A. A., Sherman, E. E., and Troshanov, E. P. 1965. Applied capillary microscopy: the role of microorganisms in the formation of iron-manganese deposits. 122 pp. Consultants Bureau, N.Y. (Translation from 1964 Russian printing by Nauka, Moscow).Google Scholar
Perry, E. C. Jr. and Tan, F. C. 1973. Significance of carbon isotope variations in carbonates from the Biwabik Iron Formation, Minnesota. pp. 229305. In: UNESCO, Genesis of Precambrian Iron and Manganese Deposits. 382 pp.Proc. Kiev. Symp., 20–25 Aug. 1970.Google Scholar
Perry, E. C. Jr., Tan, F. C., and Morey, G. B. 1973. Geology and stable isotope geochemistry of the Biwabik Iron Formation, Northern Minnesota. Econ. Geol. 68:11101125.CrossRefGoogle Scholar
Pflug, H. D. 1966. Structured organic remains from the Fig Tree series of the Barberton Mountain Land. Univ. Witwatersrand, Econ. Geol. Res. Unit, Inf. Circ. No. 28, 14 pp.Google Scholar
Pichamuthu, C. S. 1971. Precambrian geochronology of peninsular India. Geol. Soc. India J. 12:262273.Google Scholar
Prashnowsky, A. A. and Oberlies, F. 1972. Uber Lebenszeugnisse im Präkambrium Afrikas und Sudamerikas. pp. 683698. In: von Gaertner, H. R. and Wehner, H., eds. Advances in Organic Geochemistry. 1971. Pergamon Press.Google Scholar
Raff, R. A. and Raff, E. C. 1970. Respiratory mechanisms and the metazoan fossil record. Nature. 228:10031005.Google Scholar
Raff, R. A. and Mahler, H. R. 1972. The non-symbiotic origin of mitochondria. Science. 177:575582.Google Scholar
Ramdohr, P. 1958. New observations on the ores of the Witwatersrand and their genetic significance. Geol. Soc. South Afr. Trans. Annexure to Vol. 61. 50 pp.Google Scholar
Reimer, T. O. 1975. The age of the Witwatersrand system and other gold-uranium placers: Implications on the origin of the mineralisation. Neues Jahrb. Mineral. Monatshefte, Jahrg. 1975, H. 2, pp. 7998.Google Scholar
Rhoads, G. C. and Morse, J. W. 1971. Evolution and ecologic significance of oxygen-deficient marine basins. Lethaia. 4:413428.Google Scholar
Robertson, D. S. 1974. Basal Proterozoic units as fossil markers and their use in uranium prospection. Int. Atomic Energy Agency Rep. IAEA-SM-183/35. pp. 495512.Google Scholar
Robertson, W. A. 1960. Stromatolites from the Paradise Creek area, north-western Queensland. Aust. Bur. Mineral Res., Geol. and Geophys. Rep. 47, 12 pp.Google Scholar
Roscoe, S. M. 1969. Huronian rocks and uraniferous conglomerates in the Canadian Shield. Geol. Surv. Can. Pap. 68–40, 205 pp.CrossRefGoogle Scholar
Ross, C. S. 1962. Microlites in glassy volcanic rocks. Am. Mineral. 47:723740.Google Scholar
Rosanov, A. Yu. 1967. The Cambrian lower boundary problem. Geol. Mag. 104:415434.Google Scholar
Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pychova, N. G., and Sidorov, A. G. 1969. Tommotian stage and the Cambrian lower boundary problem (in Russian). Akad. Nauk. USSR, Trans. Geol. Inst. 206:1380.Google Scholar
Salop, L. J. 1972. Some geological aspects of the problem of the Au-U conglomerates of Precambrian (in Russian). Trudi VSEIGI (USSR) New Ser. 178:150174.Google Scholar
Schidlowski, M. 1970. Elektronenoptische Identifizierung zellartiger Mikrostrukturen aus dem Präkambrium des Witwatersrand System. Palaeontol. Z. 44:128133.Google Scholar
Schidlowski, M., Eichmann, R., and Junge, C. E. 1975. Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res. 2:169.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J. Paleontol. 42:651668.Google Scholar
Schopf, J. W. 1970. Precambrian microorganisms and evolutionary events prior to the origin of vascular plants. Biol. Rev. 45:319352.Google Scholar
Schopf, J. W. 1972. Evolutionary significance of the Bitter Springs (Late Precambrian) microflora. Proc. 24th Int. Geol. Congr., Sec. 1, pp. 6877.Google Scholar
Schopf, J. W. 1974. The development and diversification of Precambrian life. Origins of life. 5:119135.Google Scholar
Schopf, J. W. 1975. Precambrian paleobiology: problems and perspectives. Annu. Rev. Earth and Planet. Sci. 3:213249.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (late Precambrian) of the north-central Amadeus Basin, Australia. J. Paleontol. 45:925960.Google Scholar
Schopf, J. W., Oehler, D. Z., Horodyski, R. J., and Kvenvolden, K. A. 1971. Biogenicity and significance of the oldest known stromatolites. J. Paleontol. 45:477485.Google Scholar
Schopf, J. W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F. 1973. On the development of metaphytes and metazoans. J. Paleontol. 47:19.Google Scholar
Schopf, J. W. and Oehler, D. Z. 1976. How old are the eukaryotes? Science. 193:4749.Google Scholar
Semikhatov, M. A. 1974. Proterozoic stratigraphy and geochronology (in Russian). Akad. Nauk. USSR, Trans. Geol. Inst. 256:1302.Google Scholar
Singer, T. P. and Edmondson, D. E. 1974. Biological reduction of O2 to H2O2. pp. 315337. In: Hayaishi, O., ed. Molecular Oxygen in Biology. 367 pp.North Holland Publishing Co., American Elsevier Publ. Co.Google Scholar
Sokolov, B. S. 1972. The Vendian stage in earth history. 24th Int. Geol. Congr. (Montreal) Sec. 1 “Precambrian Geology.” pp. 7884.Google Scholar
Spjeldnaes, N. 1963. A new fossil (Papillomembrana sp.) from the upper pre-Cambrian of Norway. Nature. 200:6365.Google Scholar
Stanley, S. M. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. Am. J. Sci. 276:5676.Google Scholar
Stewart, W. D. P. and Pearson, H. W. 1970. Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae. Proc. Roy. Soc. London. 175:293311.Google Scholar
Tappan, H. 1976. Possible eucaryotic algae (Bangiophycidae) among early Proterozoic microfossils. Geol. Soc. Am. Bull. 87:633639.Google Scholar
Taylor, F. J. R. 1974. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon. 23:229258.Google Scholar
Timofeev, B. V. 1969. Proterozoic Sphaeromorphitidae (in Russian). Akad. Nauk. USSR, Inst. Geol. Geophys. Precambrian. 146 pp.Google Scholar
Timofeev, B. V. 1973a. Microscopical plant fossils of the Ukrainian Precambrian (in Russian). Akad. Nauk. USSR, Inst. Geol. Geophys. Precambrian. 99 pp.Google Scholar
Timofeev, B. V. 1973b. Proterozoic and early Paleozoic microfossils (in Russian, English summary). pp. 712. Akad. Nauk. USSR, Siberian Branch, Inst. Geol. and Geophys., Proc. 3rd Int. Palynol. Congr. Microfossils of the Oldest Deposits. 86 pp.Google Scholar
Trendall, A. F. 1973. Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ. Geol. 68:10891097.Google Scholar
Tyagi, V. V. S. 1975. The heterocysts of blue-green algae (Myxophyceae). Biol. Rev. 50:247248.Google Scholar
Tyler, S. A. and Barghoorn, E. S. 1954. Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian shield. Science 119:606608.Google Scholar
UNESCO. 1973. Genesis of Precambrian iron and manganese deposits. Proc. Kiev Symp. 20–25 August 1970, UNESCO, Paris. 382 pp.Google Scholar
Vologdin, A. G. and Drozdova, N. A. 1964. Several species of algae from the Gonam Suite of the Proterozoic Uchur Series, Ayan-Maya District, Far East (in Russian). Doklady Akad. Nauk. USSR. 159:114116.Google Scholar
Wald, G. 1964. The origin of life. Proc. Natl. Acad. Sci. 52:595611.Google Scholar
Walter, M. R., Bauld, J., and Brock, T. D. 1972. Siliceous algal and bacterial stromatolites in hot springs and geyser effluents of Yellowstone National Park. Science. 178:402405.Google Scholar
Walter, M. R., Oehler, J. H., and Oehler, D. Z. 1976. Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinter-pretation of Walcott's Helminthoidichnites. Paleontol. Soc. In Press.Google Scholar
Walter, M. R., Goode, A. D. T., and Hall, W. D. M. 1976. Microfossils from a newly discovered Precambrian stromatolitic iron formation in Western Australia. Nature. 261:221223.Google Scholar
Weller, D., Doemel, W., and Brock, T. D.In press. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.). Arch. Microbiol.Google Scholar
Windley, B. F., ed. 1975. The early history of the earth. Programme and Abstr. NATO Adv. Study Inst. Leicester, England.Google Scholar
Windley, B. F., ed. 1976. The Early History of the Earth. John Wiley and Sons, 619 pp.Google Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the southern Cordillera of Canada. Can. J. Earth Sci. 9:117.Google Scholar
Young, G. M. 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest territories, Canada. Precambrian Res. 3:137158.Google Scholar
Zhuravleva, I. T. 1970. Marine faunas and Lower Cambrian stratigraphy. Am. J. Sci. 269:417445.Google Scholar