Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T11:36:06.288Z Has data issue: false hasContentIssue false

The continuum in soft-bodied biotas from transitional environments: a quantitative comparison of Triassic and Carboniferous Konservat-Lagerstätten

Published online by Cambridge University Press:  08 April 2016

Derek E. G. Briggs
Affiliation:
Department of Geology, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, U.K.
Jean-Claude Gall
Affiliation:
Institut de Géologie, Université Louis Pasteur de Strasbourg, 1 Rue Blessig, 67084 Strasbourg Cedex, France

Abstract

The exceptionally preserved Triassic (Anisian) Grès à Voltzia fauna from the Vosges of northeastern France is compared with four major Carboniferous Konservat-Lagerstätten. The problem of comparing faunas with different types of preservation and degrees of taxonomic determination is addressed with a newly devised similarity coefficient. This coefficient quantifies and combines data from different levels in the taxonomic hierarchy and allows comparisons between biotas in a consistent direction regardless of relative diversity. The rank order of similarity between the four Carboniferous Konservat-Lagerstätten and the Grès à Voltzia is as follows: 1. Mazon Creek (Westphalian D) of Illinois; 2. Glencartholm (Visean) of southern Scotland; 3. Bear Gulch (Namurian) of Montana; and 4. Blanzy-Montceau (Stephanian) of France. These occurrences represent conditions transitional between nearshore fully marine and fresh water. The Grès à Voltzia fauna is significantly closer to the Mazon Creek fauna than to the others; the taxonomic overlap with Blanzy-Montceau and Bear Gulch is limited.

Stratigraphic age has an insignificant influence on the result; indeed, the fauna closest in age to the Grès à Voltzia, that of Blanzy-Montceau, is least similar. Taphonomic factors are important in determining the range of organisms preserved. The Glencartholm fauna is represented only by forms with either mineralized or robust chitinous skeletons, implying a greater degree of decay prior to the onset of diagenetic mineralization than in the other Konservat-Lagerstätten. Environment, however, is the major control on similarity. The Mazon Creek biota, like that of Grès à Voltzia, represents settings transitional between terrestrial and marine-influenced delta. Groups common to both Konservat-Lagerstätten include medusae, brachiopods, polychaetes, bivalve and gastropod molluscs, limulids, scorpions, spiders, branchiopods, ostracodes, malacostracans, cycloids, euthycarcinoid and myriapod uniramians, insects, fish, and tetrapods. There is a striking continuity between the faunas of Carboniferous and Triassic transitional sedimentary environments. Groups that were adapted to fluctuating conditions (e.g., shifting salinity) show strong congruence at the family and lower levels and were little affected by Permian extinctions. The major taxonomic contrasts are in the eumalacostracans and insects: many of the groups represented in the Grès à Voltzia appeared in the Permian and radiated across the Permo-Triassic boundary as Paleozoic forms became extinct.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A. 1988a. Konservat-Lagerstätten: cause and classification. Paleobiology 14:331343.CrossRefGoogle Scholar
Allison, P. A. 1988b. The decay and mineralization of proteinaceous macrofossils. Paleobiology 14:139154.Google Scholar
Babin, C. 1985. Le genre Anthraconaia (Bivalvia, Myalinidae) dans le Stephanien de Montceau-les-Mines (Saône et Loire, France). Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 115:4958.Google Scholar
Baird, G. C., Shabica, C. W., Anderson, J. L., and Richardson, E. S. Jr. 1985a. Biota of a Pennsylvanian muddy coast: habitats within the Mazonian Delta Complex, northeast Illinois. Journal of Paleontology 59:253281.Google Scholar
Baird, G. C., Sroka, S. D., Shabica, C. W., and Beard, T. L. 1985b. Mazon Creek-type fossil assemblages in the U.S. midcontinent Pennsylvanian: their recurrent character and palaeoenvironmental significance. Philosophical Transactions of the Royal Society of London B311:8799.Google Scholar
Bardack, D. 1979. Fishes of the Mazon Creek fauna. Pp. 501528. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.Google Scholar
Bolt, J. R. 1979. Amphibamus grandiceps as a juvenile dissorophid: evidence and implications. Pp. 529563. In Nitecki, M. H (ed.), Mazon Creek Fossils. Academic Press; New York.Google Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Briggs, D. E. G., and Clarkson, E. N. K. 1989. Environmental controls on the taphonomy and distribution of Carboniferous malacostracan crustaceans. Transactions of the Royal Society of Edinburgh: Earth Sciences 80:293301.Google Scholar
Burnham, L. 1981. Fossil insects from Montceau-les-Mines (France): a preliminary report. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 100:59.Google Scholar
Burnham, L. 1984. Les insectes du Carbonifère Supérieur de Montceau-les-Mines. I. L'Ordre des Caloneurodea. Annales de Paléontologie 70:167180.Google Scholar
Burnham, L. 1985. The Upper Carboniferous insect fauna of Montceau-les-Mines. II. The order Paleodictyoptera. Bulletin Trimestriol de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 116:7996.Google Scholar
Carpenter, F. M., and Burnham, L. 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences 13:297314.Google Scholar
Carpenter, F. M., and Richardson, E. S. Jr. 1971. Additional insects in Pennsylvanian concretions from Illinois. Psyche 78:267295.Google Scholar
Cater, J. M. L., Briggs, D. E. G., and Clarkson, E. N. K. 1988. Shrimp-bearing sedimentary successions in the Lower Carboniferous (Dinantian) Cementstone and Oil Shale Groups of northern Britain. Transactions of the Royal Society of Edinburgh: Earth Sciences 80:515.Google Scholar
Cheetham, A. H., and Hazel, J. E. 1969. Binary (presence-absence) similarity coefficients. Journal of Paleontology 43:11301136.Google Scholar
Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science 246:339346.CrossRefGoogle Scholar
Courel, L. 1983. Place du charbon dans le bassin d'effondrement Stéphanian de Blanzy-Montceau (Massif Central Francais). Mémoires Géologiques de l'Université de Dijon 8:7182.Google Scholar
Courel, L., Valle, B., and Branchet, M. 1985. Le bassin houiller de Blanzy-Montceau. Cadre géologique et structural. Succession et dynamique des paléoenvironnements. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 114:726.Google Scholar
Doubinger, J., and Langiaux, J. 1982. Un faux probleme: la limite Stéphanien/Autunien. Comptes rendus Academie Sciences Paris 294:395398.Google Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bulletin of the Carnegie Museum of Natural History 13:719.Google Scholar
Erwin, D. H. 1990. Mass extinction: events—end Permian. Pp. 187194. In Briggs, D. E. G., and Crowther, P. R. (eds.), Paleobiology: A Synthesis. Blackwell Scientific Publications; Oxford.Google Scholar
Factor, D. F., and Feldmann, R. M. 1985. Systematics and paleoecology of malacostracan arthropods in the Bear Gulch Limestone (Namurian) of central Montana. Annals of Carnegie Museum 54:319356.CrossRefGoogle Scholar
Fauchald, K. 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County Science Series 28.Google Scholar
Fisher, D. C. 1979. Evidence for subaerial activity of Euproops danae (Merostomata, Xiphosurida). Pp. 379447. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.Google Scholar
Fisher, D. C. 1982. Phylogenetic and macroevolutionary patterns within the Xiphosurida. Pp. 175180. In Proceedings of the Third North American Paleontological Convention, Montreal.Google Scholar
Fisher, D. C. 1984. The Xiphosurida: archetypes of bradytely? Pp. 196213. In Eldredge, N., and Stanley, S. M. (eds.), Living Fossils. Springer-Verlag; New York.Google Scholar
Foster, M. W. 1979. Soft-bodied coelenterates in the Pennsylvanian of Illinois. Pp. 191267. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.Google Scholar
Gall, J.-C. 1971. Faunes et paysages du Grès à Voltzia du nord des Vosges. Essai paléoecologique sur le Buntsandstein Superieur. Mémoires du Service de la Carte Géologique d'Alsace et de Lorraine 34.Google Scholar
Gall, J.-C. 1983. Interpretation paléoecologique de la faune des nodules fossiliferes du Stéphanien de Montceau-les-Mines. Mémoires Géologiques de l'Université de Dijon 8:5154.Google Scholar
Gall, J.-C. 1985. Fluvial depositional environment evolving into deltaic setting with marine influences in the Buntsandstein of northern Vosges (France). Pp. 449477. In Mader, D. (ed.), Aspects of Fluvial Sedimentation in the Lower Triassic Buntsandstein. Lecture Notes in Earth Sciences 4. Springer-Verlag; Berlin.CrossRefGoogle Scholar
Gall, J.-C., and Grauvogel, L. 1967a. Faune du Buntsandstein II. Les Halicynes. Annales de Paléontologie (Invertébrés) 53:114.Google Scholar
Gall, J.-C., and Grauvogel, L. 1967b. Faune du Buntsandstein III. Quelques annelides du Grès à Voltzia des Vosges. Annales de Paléontologie (Invertébrés) 53:105110.Google Scholar
Gall, J.-C., and Grauvogel-Stamm, L. 1984. Genèse des gisements fossilifères du Grès à Voltzia (Anisien) du nord des Vosges (France). Geobios, Mémoire special 8:293297.CrossRefGoogle Scholar
Gand, G. 1986. Les traces de vertébrés du Stéphanien de Montceau-les-Mines. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 117:149160.Google Scholar
Grauvogel, L., and Gall, J.-C. 1962. Progonionemus vogesiacus nov. gen. nov. sp., une méduse du Grès à Voltzia des Vosges septentrionales. Bulletin du Service de la Carte Géologique d'Alsace et de Lorraine 15:1727.Google Scholar
Grauvogel-Stamm, L. 1978. La flore du Grès à Voltzia (Buntsandstein superieur) des Vosges du Nord (France). Morphologie, anatomie, interpretations phylogenique et paléogeographique. Mémoires Sciences Géologiques, Strasbourg 50.Google Scholar
Hazel, J. 1970. Binary coefficients and clustering in biostratigraphy. Geological Society of America Bulletin 81:32373252.Google Scholar
Heyler, D. 1980. Les vertébrés du Stéphanien de Montceau-les-Mines (Saône-et-Loire). Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 94:5375.Google Scholar
Heyler, D. 1985. “Branchiosaures” du Stéphanien de Montceau-les-Mines (Saône-et-Loire, France). Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 116:115140.Google Scholar
Heyler, D. 1986. Table ronde internationale du C.N.R.S. sur le gisement Stephanien de Montceau-les-Mines: conclusions. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 117:161173.Google Scholar
Heyler, D. 1987. Vertébrés des bassins stéphaniens et autuniens du Massif Central Francais; paleobiogeographie et paleoenvironnements. Annales de la Société Géologique du Nord 106:123130.Google Scholar
Heyler, D., and Poplin, C. 1983. Actinopterygiens du Stéphanien de Montceau-les-Mines (Saône et Loire, France). Palaeovertebrata, Montpellier 13:3350.Google Scholar
Heyler, D., and Poplin, C. 1988. The fossils of Montceau-les-Mines. Scientific American 256:104110.Google Scholar
Horner, J. R. 1985. Stratigraphic position of the Bear Gulch Limestone (Lower Carboniferous) of central Montana. Compte rendu Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 5:427436.Google Scholar
Horner, J. R., and Lund, R. 1985. Biotic distribution and diversity in the Bear Gulch Limestone of central Montana. Compte rendu Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 5:437442.Google Scholar
Janvier, P., and Lund, R. 1983. Hardistiella montanensis n. gen. et sp. (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys. Journal of Vertebrate Paleontology 2:407413.Google Scholar
Kjellesvig-Waering, E. N. 1986. A restudy of the fossil Scorpionida of the world. Palaeontographica Americana 55.Google Scholar
Landman, N. H., and Davis, R. A. 1988. Jaw and crop preserved in an orthoconic nautiloid cephalopod from the Bear Gulch Limestone (Mississippian, Montana). New Mexico Bureau of Mines and Mineral Resources Memoir 44:103107.Google Scholar
Lumsden, G. I., Tulloch, W., Howells, M. F., and Davies, A. 1967. The geology of the neighbourhood of Langholm. Memoir of the Geological Survey of Scotland.Google Scholar
Lund, R.In press. Chondrichthyan life history styles as revealed by the Mississippian of Montana. Journal of Environmental Biology of Fishes.Google Scholar
Lutz-Garihan, A. B. 1985. Brachiopods from the Upper Mississippian Bear Gulch Limestone of Montana. Compte rendu Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 5:457467.Google Scholar
Melton, W. G. Jr. 1971. The Bear Gulch fauna from central Montana. Proceedings of the North American Paleontological Convention, Chicago:12021207.Google Scholar
Nitecki, M. H. (ed.). 1979. Mazon Creek Fossils. Academic Press; New York.Google Scholar
Pacaud, G., Rolfe, W. D. I., Schram, F. R., Secretan, S., and Sotty, D. 1981. Quelques invertébrés nouveaux du Stéphanien de Montceau-les-Mines. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 97:3743.Google Scholar
Peach, B. N. 1882. On some new Crustacea from the Lower Carboniferous rocks of Eskdale and Liddesdale. Transactions of the Royal Society of Edinburgh 30:7391.CrossRefGoogle Scholar
Peach, B. N. 1883. Further researches among the Crustacea and Arachnida of the Carboniferous rocks of the Scottish border. Transactions of the Royal Society of Edinburgh 30:511529.Google Scholar
Petzold, D. D., and Lane, N. G. 1988. Stratigraphic distribution and paleoecology of Pennsylvanian conchostracans (Crustacea: Branchiopoda) on the east side of the Illinois Basin. Journal of Paleontology 62:799808.Google Scholar
Pfefferkorn, H. W. 1979. High diversity and stratigraphic age of the Mazon Creek flora. Pp. 129142. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.CrossRefGoogle Scholar
Poplin, C., and Heyler, D. 1987. Le squelette axial d'un nouveau Brookvaliiforme (Poisson actinopterygien) du Stéphanien de Montceau-les-Mines relevé par une fossilisation inhabituelle. Actes du 112e Congrès National des Sociétés Savantes. Section des Sciences II:2737.Google Scholar
Richardson, E. S. Jr. 1956. Pennsylvanian invertebrates of the Mazon Creek area, Illinois. Marine fauna. Fieldiana: Geology 12:5767.Google Scholar
Richardson, E. S. Jr., and Johnson, R. S. 1971. The Mazon Creek faunas. Proceedings of the North American Paleontological Convention, Chicago:12221235.Google Scholar
Rigby, J. K. 1985. The sponge fauna fom the Mississippian Heath Formation of Central Montana. Compte rendu Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 5:443456.Google Scholar
Rolfe, W. D. I., Schram, F. R., Pacaud, G., Sotty, D., and Secretan, S. 1982. A remarkable Stephanian biota from Montceau-les-Mines, France. Journal of Paleontology 56:426428.Google Scholar
Schram, F. R. 1970. Isopod from the Pennsylvanian of Illinois. Science 169:854855.Google Scholar
Schram, F. R. 1977. Paleozoogeography of late Paleozoic and Triassic Malacostraca. Systematic Zoology 26:367379.Google Scholar
Schram, F. R. 1979a. The Mazon Creek biotas in the context of a Carboniferous faunal continuum. Pp. 159190. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.CrossRefGoogle Scholar
Schram, F. R. 1979b. Limulines of the Mississippian Bear Gulch Limestone of central Montana, USA. Transactions of the San Diego Society of Natural History 19:6774.Google Scholar
Schram, F. R. 1979c. Worms of the Mississippian Bear Gulch Limestone of central Montana, USA. Transactions of the San Diego Society of Natural History 19:107120.Google Scholar
Schram, F. R. 1981. Late Paleozoic crustacean communities. Journal of Paleontology 55:126137.Google Scholar
Schram, F. R. 1983. Lower Carboniferous biota of Glencartholm, Eskdale, Dumfriesshire. Scottish Journal of Geology 19:115.Google Scholar
Schram, F. R. 1984. Fossil Syncarida. Transactions of the San Diego Society of Natural History 20:189246.Google Scholar
Schram, F. R. 1985. The Bear Gulch crustaceans and their bearing on late Paleozoic diversity and Permo-Triassic evolution of Malacostraca. Compte rendu Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 5:468472.Google Scholar
Schram, F. R. 1986. Crustacea. Oxford University Press; New York.Google Scholar
Schram, F. R., Feldmann, R. M., and Copeland, M. J. 1978. The late Devonian Palaeopalaemonidae and the earliest decapod crustaceans. Journal of Paleontology 52:13751387.Google Scholar
Schram, F. R., and Horner, J. 1978. Crustacea of the Mississippian Bear Gulch Limestone of central Montana. Journal of Paleontology 52:394406.Google Scholar
Schram, F. R., and Rolfe, W. D. I. 1982. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. Journal of Paleontology 56:14341450.Google Scholar
Secretan, S. 1980. Les arthropodes du Stéphanien de Montceau-les-Mines. Bulletin Trimestriel de la Société d'Histoire Naturelle et des Amis du Muséum d'Autun 94:2335.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimento-logical, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B311:523.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology 51.Google Scholar
Simpson, G. G. 1960. Notes on the measurement of faunal resemblance. American Journal of Science 258A:300311.Google Scholar
Sohn, I. G. 1977. Paraparchites mazonensis n. sp. (Ostracoda) from Middle Pennsylvanian ironstone concretions of Illinois. Fieldiana: Geology 37:4359.Google Scholar
Tasch, P. 1969. Branchiopoda. Pp. R128191. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4(1). The Geological Society of America and the University of Kansas; Boulder, Colorado, and Lawrence, Kansas.Google Scholar
Thompson, I. 1979. Errant polychaetes (Annelida) from the Pennsylvanian Essex Fauna of northern Illinois. Palaeontographica A 163:169199.Google Scholar
Thompson, I., and Johnson, R. G. 1977. New fossil polychaete from Essex, Illinois. Fieldiana: Geology 33:471487.Google Scholar
Valentine, J. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall; Englewood Cliffs, New Jersey.Google Scholar
Williams, L. A. 1983. Deposition of the Bear Gulch Limestone: a Carboniferous Plattenkalk from central Montana. Sedimentology 30:843860.Google Scholar
Woodland, B. G., and Stenstrom, R. C. 1979. The occurrence and origin of siderite concretions in the Francis Creek Shale (Pennsylvanian) of northeastern Illinois. Pp. 69103. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.Google Scholar