Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T11:42:40.469Z Has data issue: false hasContentIssue false

Convergence, parallelism, and function of extreme parietal callus in diverse groups of Cenozoic Gastropoda

Published online by Cambridge University Press:  23 September 2020

Carlie Pietsch
Affiliation:
Geology Department, San José State University, San Jose, California95191, U.S.A. E-mail: carlie.pietsch@sjsu.edu
Brendan M. Anderson
Affiliation:
Department of Geology and Geography, West Virginia University, Morgantown, West Virginia26506, U.S.A. E-mail: BMA0022@mail.wvu.edu
Lauren M. Maistros
Affiliation:
Department of Earth and Atmospheric Sciences, Cornell University, 112 Hollister Drive, Ithaca, New York14853, U.S.A. E-mail: lauren.maistros@gmail.com
Ethan C. Padalino
Affiliation:
Geology Department, San José State University, San Jose, California95191, U.S.A. E-mail: ethan.padalino@sjsu.edu
Warren D. Allmon
Affiliation:
Department of Earth and Atmospheric Sciences, Cornell University, 112 Hollister Drive, and Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York14850, U.S.A. E-mail: wda1@cornell.edu

Abstract

We use scanning electron microscopy imaging to examine the shell microstructure of fossil and living species in five families of caenogastropods (Strombidae, Volutidae, Olividae, Pseudolividae, and Ancillariidae) to determine whether parallel or convergent evolution is responsible for the development of a unique caenogastropod trait, the extreme parietal callus (EPC). The EPC is defined as a substantial thickening of both the spire callus and the callus on the ventral shell surface such that it covers 50% or more of the surface. Caenogastropods as a whole construct the EPC convergently, using a variety of low-density, poorly organized microstructures that are otherwise uncommon in caenogastropod non-callus shell construction. Within clades, however, we see evidence for parallelism in decreased regulation in both the shell and callus microstructure. Low-density and poorly ordered microstructure—such as used for the EPC—uses less organic scaffolding and is less energetically expensive than normal shell microstructure. This suggests the EPC functions to rapidly and inexpensively increase shell thickness and overall body size. Tests of functional ecology suggest that the EPC might function both to defend against crushing predation through increased body size and dissipation of forces while aiding in shell orientation of highly mobile gastropods. These interpretations hinge on the current phylogenetic placement of caenogastropod families, emphasizing the essential contribution of phylogeny when interpreting homoplasy.

Type
Articles
Copyright
Copyright © 2020 The Paleontological Society. All rights reserved

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.18931zctq

References

Literature Cited

Agrawal, A. A. 2017. Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. American Naturalist 190:S1S12.10.1086/692111CrossRefGoogle Scholar
Albrecht, C., Wilke, T., Kuhn, K., and Streit, B.. 2004. Convergent evolution of shell shape in freshwater limpets: the African genus Burnupia. Zoological Journal of the Linnean Society 140:577586.10.1111/j.1096-3642.2003.00108.xCrossRefGoogle Scholar
Alexander, R. R., and Dietl, G. P.. 2003. The fossil record of shell-breaking predation on marine bivalves and gastropods. Pp. 141176 in Kelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator–prey interactions in the fossil record. Springer US, Boston, Mass.Google Scholar
Allmon, W. D. 1990. Review of the Bullia Group (Gastropoda: Nassariidae) with comments on its evolution, biogeography, and phylogeny. Paleontological Research Institution, Ithaca, N.Y. Bulletins of American Paleontology. 99: 1–179.Google Scholar
Allmon, W. D. 2020. Invertebrate paleontology and evolutionary thinking in the U.S. and Britain, 1860–1940. Journal of the History of Biology. doi: 10.1007/s10739-020-09599-1.CrossRefGoogle Scholar
Allmon, W. D. and Geary, D. H.. 1986. A pattern of homeomorphy in diverse lineages of gastropods. North American Paleontological Convention IV, Abstracts, p. A1.Google Scholar
Alyakrinskaya, I. 2005. Functional significance and weight properties of the shell in some mollusks. Biology Bulletin 32:397418.10.1007/s10525-005-0118-yCrossRefGoogle Scholar
Anderson, B. M., and Allmon, W. D.. 2018. When domes are spandrels: on septation in turritellids (Cerithioidea) and other gastropods. Paleobiology 44:444459.10.1017/pab.2018.12CrossRefGoogle Scholar
Arnold, S. J. 1983. Morphology, performance and fitness. American Zoologist 23:347361.CrossRefGoogle Scholar
Averof, M., and Patel, N. H.. 1997. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682686.10.1038/41786CrossRefGoogle ScholarPubMed
Avery, R., and Etter, R. J.. 2006. Microstructural differences in the reinforcement of a gastropod shell against predation. Marine Ecology Progress Series 323:159170.Google Scholar
Bandel, K. 1979. Ubergange von einfacheren Strukturtypen zur Kreuslamellen-struktur bei Gastropodenschalen. Biomineralization 10:938.Google Scholar
Bandel, K. 1990. Shell structure of the Gastropoda excluding Archaeogastropoda. In Carter, J. G., ed. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends 1:117132. Van Nostrand Reinhold, New York.Google Scholar
Barnett, W. S. 1981. A morphometric, stratigraphic, and paleoecologic analysis of the genera Voluticorbis and Athleta (Gastropoda, Voluta) from the Paleocene and Eocene Epochs of Alabama. M.S. thesis. Auburn University, Auburn, Ala.Google Scholar
Belyea, P. R., and Carter, J. G.. 1990. Microstructural adaptations for abrasion resistance and fracture control in molluscan shells. In Carter, J. G., ed. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends 5:331–32. Wiley/American Geophysical Union, San Francisco. https://agupubs.onlinelibrary.wiley.com/doi/book/10.1029/SC005.Google Scholar
Bertness, M. D., and Cunningham, C.. 1981. Crab shell–crushing predation and gastropod architectural defense. Journal of Experimental Marine Biology and Ecology 50:213230.10.1016/0022-0981(81)90051-4CrossRefGoogle Scholar
Blake, D. B. 1980. Homeomorphy in Paleozoic bryozoans: a search for explanations. Paleobiology 6:451465.10.1017/S0094837300003626CrossRefGoogle Scholar
Blount, Z. D., Lenski, R. E., and Losos, J. B.. 2018. Contingency and determinism in evolution: replaying life's tape. Science 362:eaam5979.Google ScholarPubMed
Bøggild, O. B. 1930. The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, Raekke 9:231326.Google Scholar
Briggs, D. E. 2005. Seilacher on the science of form and function. Pp. 324 in Briggs, D.E., ed. Evolving form and function: fossils and development, proceedings of a symposium honoring Adolf Seilacher for his contributions to paleontology, in celebration of his 80th birthday. Peabody Museum of Natural History Special Publication. Yale University, New Haven, Conn.Google Scholar
Brown, A. C. 1971. The ecology of the sandy beaches of the Cape Peninsula, South Africa. Part 2: the mode of life of Bullia (Gastropoda: Prosobranchiata). Transactions of the Royal Society of South Africa 39:281319.10.1080/00359197109519120CrossRefGoogle Scholar
Brown, A. C. 2001. Surfing in the sandy-beach whelk Bullia digitalis (Dillwyn). African Zoology 36:121127.10.1080/15627020.2001.11657129CrossRefGoogle Scholar
Carranza, A., and Norbis, W.. 2005. Latitudinal trends in shell characters of the neogastropod Olivancillaria urceus (Gastropoda: Olividae) in the temperate southwestern Atlantic Ocean. The Nautilus 112:8389.Google Scholar
Carter, J. G., and Clark, G. R. II. 1985. Classification and phylogenetic significance of molluscan shell microstructure. In Broadhead, T. W., ed. Mollusks: notes for a short course. University of Tennessee Studies in Geology 13:5071.Google Scholar
Cernohorsky, W. 1971. The family Naticidae (Mollusca: Gastropoda) in the Fiji Islands. Records of the Auckland Institute and Museum 8:169208.Google Scholar
Chateigner, D., Hedegaard, C., and Wenk, H.-R.. 2000. Mollusc shell microstructures and crystallographic textures. Journal of Structural Geology 22:17231735.CrossRefGoogle Scholar
Checa, A. G. 2000. Remote biomineralization in divaricate ribs of Strigilla and Solecurtus (Tellinoidea: Bivalvia). Journal of Molluscan Studies 66:457466.10.1093/mollus/66.4.457CrossRefGoogle Scholar
Chirat, R., Moulton, D. E., and Goriely, A.. 2013, Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proceedings of the National Academy of Sciences USA 110:60156020.CrossRefGoogle ScholarPubMed
Cole, S. R., Wright, D. F., and Ausich, W. I.. 2019. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology 521:8298.10.1016/j.palaeo.2019.02.006CrossRefGoogle Scholar
Collin, R., and Cipriani, R.. 2003. Dollo's law and the re-evolution of shell coiling. Proceedings of the Royal Society of London B 270:25512555.10.1098/rspb.2003.2517CrossRefGoogle ScholarPubMed
Conrad, T. A. 1832. Fossil shells of the Tertiary formations of North America, illustrated by figures drawn on stone from nature. Judah Dobson, W.P. Gibbons, Printer, Philadelphia.Google Scholar
Conrad, T. A. 1853. Synopsis of the genera Cassidula, Humph., and of a proposed new genus Athleta. Proceedings of the Academy of Natural Sciences of Philadelphia 6:448449.Google Scholar
Conrad, T. A. 1860. Descriptions of new species of Cretaceous and Eocene fossils of Mississippi and Alabama. Philadelphia Academy of Natural Sciences Journal, series 2, 4:275298.Google Scholar
Cook, J., and Gordon, J. E.. 1964. A mechanism for the control of crack propagation in all-brittle systems. Proceedings of the Royal Society of London A 282:508520.Google Scholar
Cox, L. R. 1960. General characteristics of Gastropoda. Pp. I84–I169 in Mollusca 1, Gastropoda. Part I of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and the University of Kansas Press, pp. I84I169.Google Scholar
Currey, J. D. 1976. Further studies on the mechanical properties of mollusc shell material. Journal of Zoology 180:44545310.1111/j.1469-7998.1976.tb04690.xCrossRefGoogle Scholar
Currey, J. D. 1977. Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London B 196:443463Google Scholar
Currey, J. D. 1988. Shell form and strength. Pp. 183210 in Trueman, E. R. and Clarke, M. R., eds. The Mollusca. Vol. 11, Form and function. Academic Press, New York.10.1016/B978-0-12-751411-6.50015-1CrossRefGoogle Scholar
Currey, J. D., and Kohn, A. J.. 1976. Fracture in the crossed-lamellar structure of Conus shells. Journal of Materials Science 11:16151623.10.1007/BF00737517CrossRefGoogle Scholar
Currey, J. D., and Taylor, J. D.. 1974. The mechanical behavior of some molluscan hard tissues. Journal of Zoology 173:395406.10.1111/j.1469-7998.1974.tb04122.xCrossRefGoogle Scholar
Cusack, M., Guo, D., Chung, P., and Kamenos, N. A.. 2013. Biomineral repair of abalone shell aperture. Journal of Structural Biology 183:165171.10.1016/j.jsb.2013.05.010CrossRefGoogle Scholar
Cyrus, A., Rupert, S., Silva, A., Graf, M., Rappaport, J., Paladino, F., Peters, W., Marine, G., Station, B., Grande, P., Cruz, S., and Rica, C.. 2012. The behavioural and sensory ecology of Agaronia propatula (Caenogastropoda: Olividae), a swash-surfing predator on sandy beaches of the Panamic faunal province. Journal of Molluscan Studies 78:235245.10.1093/mollus/eys006CrossRefGoogle Scholar
Dall, W. H. 1890. Contributions to the Tertiary fauna of Florida, with especial reference to the Miocene silex-beds of Tampa and the Pliocene beds of the Caloosahatchee River. Part I pulmonate, opisthobranchiate, and orthodont gastropods. Wanger Free Institute of Science, Philadelphia, PA.Google Scholar
Dick, M. H., Lidgard, S., Gordon, D. P., and Mawatari, S. F.. 2009. The origin of ascophoran bryozoans was historically contingent but likely. Proceedings of the Royal Society of London B 276:31413148.Google ScholarPubMed
Edgell, T. C. and Neufeld, C. J.. 2008. Experimental evidence for latent developmental plasticity: intertidal whelks respond to a native but not an introduced predator. Biology Letters 4:385387.Google ScholarPubMed
Eroukhmanoff, F., Hargeby, A., Arnberg, N., Hellgren, O., Bensch, S., and Svensson, E.. 2009. Parallelism and historical contingency during rapid ecotype divergence in an isopod. Journal of Evolutionary Biology 22:10981110.10.1111/j.1420-9101.2009.01723.xCrossRefGoogle Scholar
Farmer, W. 1970. Swimming gastropods (opisthobranchia and prosobranchia). Veliger 13:7389.Google Scholar
Fleury, C., Marin, F., Marie, B., Luquet, G., Thomas, J., Josse, C., Serpentini, A., and Lebel, J. M.. 2008. Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study. Tissue and Cell, 40:207218.CrossRefGoogle ScholarPubMed
Fraser, D., Gorelick, R., and Rybczynski, N.. 2015. Macroevolution and climate change influence phylogenetic community assembly of North American hoofed mammals. Biological Journal of the Linnean Society 114:485494.10.1111/bij.12457CrossRefGoogle Scholar
Friend, D. S. 2020. Systematics of Paleocene and Eocene Volutospina (Neogastropoda) from the U.S. Gulf Coastal Plain and the Hampshire Basin, U.K. Journal of Paleontology (in press).Google Scholar
Gabriel, J. 1981. Differing resistance of various mollusc shell materials to simulated whelk attack. Journal of Zoology 194:363369.10.1111/j.1469-7998.1981.tb04587.xCrossRefGoogle Scholar
Gardner, J. 1945. Mollusca of the Tertiary formations of northeastern Mexico. Geological Society of America Memoir 11:1332.10.1130/MEM11-p1CrossRefGoogle Scholar
Geary, D. H., Staley, A. W., Müller, P., and Magyar, I.. 2002. Iterative changes in Lake Pannon Melanopsis reflect a recurrent theme in gastropod morphological evolution. Paleobiology 28:208221.10.1666/0094-8373(2002)028<0208:ICILPM>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Gemmell, M. R., Trewick, S. A., Crampton, J. S., Vaux, F., Hills, S. F., Daly, E. E., Marshall, B. A., Beu, A. G., and Morgan-Richards, M.. 2018. Genetic structure and shell shape variation within a rocky shore whelk suggest both diverging and constraining selection with gene flow. Biological Journal of the Linnean Society 125:827843.Google Scholar
Gmelin, J. F. 1791 Systema naturae per regna tria natura. Editio decima tertia, aucta, reformata. Leipzog 1:30213910.Google Scholar
Gosliner, T. M. 1991. Morphological parallelism in opisthobranch gastropods. Malacologia 32:313327.Google Scholar
Gosliner, T. M., and Ghiselin, M. T.. 1984. Parallel evolution in opisthobranch gastropods and its implications for phylogenetic methodology. Systematic Zoology 33:255274.Google Scholar
Gould, S. J. 1971. Precise but fortuitous convergence in Pleistocene land snails from Bermuda. Journal of Paleontology 45:409418.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge, Mass.CrossRefGoogle Scholar
Gould, S. J., and Lewontin, R. C.. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205:581598.Google Scholar
Graus, R. R. 1974. Latitudinal trends in the shell characteristics of marine gastropods. Lethaia 7:303314.10.1111/j.1502-3931.1974.tb00906.xCrossRefGoogle Scholar
Hall, B. K. 2003. Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews 78:409433.Google ScholarPubMed
Harvey, P. H., and Pagel, M. D.. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
Hedegaard, Claus. 1997. Shell structures of the Recent Vetigastropoda. Journal of Molluscan Studies 63:369377.CrossRefGoogle Scholar
Hickman, C. S. 2013. Interacting constraints and the problem of similarity in gastropod structure and function. American Malacological Bulletin 31:155168.10.4003/006.031.0107CrossRefGoogle Scholar
Hubendick, B. 1952. On the evolution of the so-called thalassoid molluscs of Lake Tanganyika. Arkiv fur Zoologi 3:319323.Google Scholar
Hyman, L.H. 1967. The invertebrates. Vol. VI, Mollusca I, Aplacophora, Ployplacophora, Monoplacophora, Gastropoda. McGraw Hill, New York.Google Scholar
Irie, T., and Morimoto, N.. 2016. Intraspecific variations in shell calcification across thermal window and within constant temperatures: experimental study on an intertidal gastropod Monetaria annulus. Journal of Experimental Marine Biology and Ecology 483:130138.10.1016/j.jembe.2016.07.006CrossRefGoogle Scholar
Jackson, A. P., Vincent, J. F., and Turner, R.. 1988. The mechanical design of nacre. Proceedings of the Royal Society of London B 234:415440.Google Scholar
Jackson, A. P., Vincent, J. F., and Turner, R.. 1990. Comparison of nacre with other ceramic composites. Journal of Materials Science 25:31733178.10.1007/BF00587670CrossRefGoogle Scholar
Jackson, D. J., and Degnan, B. M.. 2016. The importance of evo-devo to an integrated understanding of molluscan biomineralisation. Journal of Structural Biology 196:6774.10.1016/j.jsb.2016.01.005CrossRefGoogle Scholar
Jones, R., Culver, D. C., and Kane, T. C.. 1992. Are parallel morphologies of cave organisms the result of similar selection pressures? Evolution 46:353365.10.1111/j.1558-5646.1992.tb02043.xCrossRefGoogle ScholarPubMed
Jurberg, P. 1970. Sôbre a estrutura da concha de Olivancillaria urceus (Röding, 1798) (Mollusca, Olividae). Revista Brasileira de Biologia 30:3942.Google Scholar
Kamat, S., Su, X., Ballarini, R., and Heuer, A.. 2000. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405:10361040.Google ScholarPubMed
Kantor, Y. I., Fedosov, A., Puillandre, N., Bonillo, C., and Bouchet, P.. 2017. Returning to the roots: morphology, molecular phylogeny and classification of the Olivoidea (Gastropoda: Neogastropoda). Zoological Journal of the Linnean Society 180:493541.10.1093/zoolinnean/zlw003CrossRefGoogle Scholar
Knoll, K., Landman, N. H., Cochran, J. K., Macleod, K. G., and Sessa, J. A.. 2016. Microstructuralpreservation and the effects of diagenesis on the carbon and oxygen isotope composition of Late Cretaceous aragonitic mollusks from the Gulf Coastal Plain and the Western Interior Seaway. American Journal of Science 316:591613.CrossRefGoogle Scholar
Kocot, K. M., Aguilera, F., McDougall, C., Jackson, D. J., and Degnan, B. M.. 2016. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Frontiers in Zoology 13:23.10.1186/s12983-016-0155-zCrossRefGoogle ScholarPubMed
Kohn, A. J., ed. 1999. Anti-predator defences of shelled gastropods. Pp. 169181 in Savazzi, E., ed. Functional morphology of the invertebrate skeleton. Wiley and Sons, Chichester, U.K.Google Scholar
Kohn, A. J., Myers, E. R., and Meenakshi, V. R.. 1979. Interior remodeling of the shell by a gastropod mollusc. Proceedings of the National Academy of Sciences USA 76:34063410.10.1073/pnas.76.7.3406CrossRefGoogle ScholarPubMed
Kuhn-Spearing, L.T., Kessler, H., Chateau, E., Ballarini, R., Heuer, A. H., and Spearing, S. M.. 1996. Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. Journal of Materials Science 31:65836594.10.1007/BF00356266CrossRefGoogle Scholar
Lamarck, J. B. M. de. 1811. Suite de la détermination des espèces de Mollusques testacés. Volute (Voluta). Annales du Muséum National d'Histoire Naturelle 17:5480.Google Scholar
Lamsdell, J. C., Congreve, C. R., Hopkins, M. J., Krug, A. Z., and Patzkowsky, M. E.. 2017. Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology and Evolution 32:452463.Google ScholarPubMed
Liu, M. M., Davey, J. W., Banerjee, R., Han, J., Yang, F., Aboobaker, A., Blaxter, M. L., and Davison, A.. 2013. Fine mapping of the pond snail left-right asymmetry (chirality) locus using RAD-Seq and fibre-FISH. PLoS ONE 8:e71067.CrossRefGoogle ScholarPubMed
Losos, J. B. 2011. Convergence, adaptation, and constraint. Evolution 65:18271840.10.1111/j.1558-5646.2011.01289.xCrossRefGoogle ScholarPubMed
Losos, J. B. 2017. Improbable destinies. Riverhead Books, New York.Google Scholar
Maderspacher, F. 2016. Snail chirality: the unwinding. Current Biology 26:R215R217.10.1016/j.cub.2016.02.008CrossRefGoogle ScholarPubMed
Mahler, D. L., Weber, M. G., Wagner, C. E., and Ingram, T.. 2017. Pattern and process in the comparative study of convergent evolution. American Naturalist 190:S13S28.10.1086/692648CrossRefGoogle ScholarPubMed
Miller, D., and LaBarbera, M.. 1995. Effects of foliaceous varices on the mechanical properties of Chicoreus dilectus (Gastropoda: Muricidae). Journal of Zoology 236:151160.10.1111/j.1469-7998.1995.tb01790.xCrossRefGoogle Scholar
Moore, J., and Willmer, P.. 1997. Convergent evolution in invertebrates. Biological Reviews 72:160.10.1017/S0006323196004926CrossRefGoogle ScholarPubMed
Pacaud, J. M. and Cazes, L.. 2014. Motif coloré résiduel préservé sur des coquilles du genre Bullia Gray in Griffith & Pidgeon, 1833 (Mollusca: Gastropoda) de l’Éocène moyen du bassin de Paris et des Etats-Unis. Xenophora 147:1622.Google Scholar
Paleobiology Database. 2019. Home page. paleobiodb.org, accessed 25 November 2019.Google Scholar
Palmer, A. R. 1977. Function of shell sculpture in marine gastropods: hydrodynamic destabilization in Ceratostoma foliatum. Science 197:12931295.10.1126/science.197.4310.1293CrossRefGoogle ScholarPubMed
Palmer, A. R. 1979. Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33:697713.10.1111/j.1558-5646.1979.tb04722.xCrossRefGoogle ScholarPubMed
Palmer, A. R. 1980. Locomotion rates and shell form in the Gastropoda: a re-evaluation. Malacologia 19:289296.Google Scholar
Palmer, A. R. 1981. Do carbonate skeletons limit the rate of body growth? Nature 292:150152.10.1038/292150a0CrossRefGoogle Scholar
Palmer, A. R. 1983. Relative cost of producing skeletal organic matrix versus calcification—evidence from marine gastropods. Marine Biology 75:287292.10.1007/BF00406014CrossRefGoogle Scholar
Palmer, A. R. 1992. Calcification in marine molluscs: how costly is it? Proceedings of the National Academy of Sciences USA 89:13791382.10.1073/pnas.89.4.1379CrossRefGoogle Scholar
Palmer, K. V., and Brann, D. C.. 1966. Catalogue of the Paleocene and Eocene mollusks of the southern and eastern United States. Part II, Gastropoda. Bulletins of American Paleontology 48:4711057.Google Scholar
Peterson, A. T. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38:817827.10.1111/j.1365-2699.2010.02456.xCrossRefGoogle Scholar
Ponder, W. F., and Lindberg, D. R.. 1997. Towards a phylogeny of gastropod molluscs: analysis using morphological characters. Zoological Journal of the Linnean Society 119:83265.CrossRefGoogle Scholar
Ponder, W. F., Colgan, D. J., Healy, J. M., Nutzel, A., Simone, L. R. L., and Strong, E.. 2008. Caenogastropoda. Pp. 331384 in Ponder, W. F. and Lindberg, D. R., eds. Phylogeny and evolution of the Mollusca. University of California Press, Berkeley.10.1525/california/9780520250925.003.0013CrossRefGoogle Scholar
Powell, R. 2007. Is convergence more than an analogy? Homoplasy and its implications for macroevolutionary predictability. Biology and Philosophy 22:565578.10.1007/s10539-006-9057-3CrossRefGoogle Scholar
Price, R. M. 2003. Columellar muscle of neogastropods: muscle attachment and the function of columellar folds. Biological Bulletin 205:351366.10.2307/1543298CrossRefGoogle ScholarPubMed
Reif, W. E., Thomas, R. D. K., and Fischer, M. S.. 1985. Constructional morphology—the analysis of constraint in evolution. Acta Biotheoretica 34:233248.10.1007/BF00046787CrossRefGoogle Scholar
Rodriguez-Navarro, A. B., Checa, A., Willinger, M.-G., Bolmaro, R., and Bonarski, J.. 2012. Crystallographic relationships in the crossed lamellar microstructure of the shell of the gastropod Conus marmoreus. Acta Biomaterialia 8:830835.10.1016/j.actbio.2011.11.001CrossRefGoogle ScholarPubMed
Rosenberg, G. 1996. Independent evolution of terrestriality in Atlantic truncatellid gastropods. Evolution 50:682693.10.1111/j.1558-5646.1996.tb03878.xCrossRefGoogle ScholarPubMed
Rudwick, M. J. 2018. The fate of the method of “paradigms” in paleobiology. Journal of the History of Biology 51:479533.CrossRefGoogle Scholar
Saether, O. A. 1983. The canalized evolutionary potential—inconsistencies in phylogenetic reasoning. Systematic Zoology 32:343359.10.2307/2413162CrossRefGoogle Scholar
Salinas, C., and Kisailus, D.. 2013. Fracture mitigation strategies in gastropod shells. JOM: The Journal of the Minerals, Metals and Materials Society 65:473480.10.1007/s11837-013-0570-yCrossRefGoogle Scholar
Savazzi, E. 1992. Constructional morphology of strombid gastropods. Lethaia 24:311331.10.1111/j.1502-3931.1991.tb01482.xCrossRefGoogle Scholar
Scott, T. 1902. Observations on the food of fishes. Pp. 486538 in Annual report of the Fishery Board for Scotland, being for the year 1901. Fishery Board for Scotland, Glasgow.Google Scholar
Scott, W. B. 1891. On the osteology of Mesohippus and Leptomeryx, with observations on the modes and factors of evolution in the Mammalia. Journal of Morphology 5:301402.10.1002/jmor.1050050302CrossRefGoogle Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstructionsmorphologie. Lethaia 3:393396.10.1111/j.1502-3931.1970.tb00830.xCrossRefGoogle Scholar
Simone, L. R. L. 2005. Comparative morphological study of representatives of the three families of Stromboidea and the Xenophoroidea (Mollusca, Caenogastropoda), with an assessment of their phylogeny. Arquivos de Zoologia 37:141267.10.11606/issn.2176-7793.v37i2p141-267CrossRefGoogle Scholar
Sowerby, G. B. I. 1830. Species conchyliorum, or, Concise original descriptions and observations accompanied by figures of all the species of recent shells, with their varieties. Vol. I, part I, containing A monograph of the genus Cymba and monographs of the genera Ancillaria, Ovulum, and Pandora. G. B. Sowerby, London.Google Scholar
Strong, E. E., and Glaubrecht, M.. 2002. Evidence for convergent evolution of brooding in a unique gastropod from Lake Tanganyika: anatomy and affinity of Tanganyicia rufofilosa (Caenogastropoda, Cerithioidea, Paludomidae). Zoologica Scripta 31:167184.Google Scholar
Strong, E. E., Puillandre, N., Beu, A. G., Castelin, M., and Bouchet, P.. 2019. Frogs and tuns and tritons—a molecular phylogeny and revised family classification of the predatory gastropod superfamily Tonnoidea (Caenogastropoda). Molecular Phylogenetics and Evolution 130:1834.10.1016/j.ympev.2018.09.016CrossRefGoogle Scholar
Sud, D., Poncet, J., Saihi, A., Lebel, J., Doumenc, D., and Boucaud-Camou, E.. 2002. A cytological study of the mantle edge of Haliotis tuberculata L. (Mollusca, Gastropoda) in relation to shell structure. Journal of Shellfish Research 21:201210.Google Scholar
Taylor, J. D., and Layman, M.. 1972. The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15:7387.Google Scholar
Teso, V., and Pastorino, G.. 2011. A revision of the genus Olivancillaria (Mollusca: Olividae) from the southwestern Atlantic. Zootaxa 2889:134.10.11646/zootaxa.2889.1.1CrossRefGoogle Scholar
Tseng, Z. J. 2013. Testing adaptive hypotheses of convergence with functional landscapes: a case study of bone–cracking hypercarnivores. PLoS ONE 8:e65305.10.1371/journal.pone.0065305CrossRefGoogle ScholarPubMed
Van Damme, D., and Pickford, N.. 1995. The late Cenozoic Ampullariidae (Mollusca, Gastropoda) of the Albertine Rift Valley (Uganda–Zaire). Hydrobiologia 316:132.10.1007/BF00019372CrossRefGoogle Scholar
Vermeij, G. J. 1974. Marine faunal dominance and molluscan shell form. Evolution 28:656664.10.1111/j.1558-5646.1974.tb00797.xCrossRefGoogle ScholarPubMed
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 1993. A natural history of shells. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 1998. Generic revision of the neogastropod family Pseudolividae. The Nautilus 111:5384.Google Scholar
Vermeij, G. J. 2001. Innovation and evolution at the edge: origins and fates of gastropods with a labral tooth. Biological Journal of the Linnean Society 72:461508.10.1111/j.1095-8312.2001.tb01333.xCrossRefGoogle Scholar
Vermeij, G. J. 2002. Characters in context: molluscan shells and the forces that mold them. Paleobiology 28:4154.10.1666/0094-8373(2002)028<0041:CICMSA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Vermeij, G. J. 2005. Shells inside out: the architecture, evolution and function of shell envelopment in mollusks. Pp. 197222 in Briggs, D. E. G., ed. Evolving form and function: fossils and development. Peabody Museum of Natural History, Yale University, New Haven, Conn.Google Scholar
Vermeij, G. J. 2006. Historical contingency and the purported uniqueness of evolutionary innovations. Proceedings of the National Academy of Sciences USA 103:18041809.Google ScholarPubMed
Vermeij, G. J. 2007. The ecology of invasion: acquisition and loss of the siphonal canal in gastropods. Paleobiology 33:469493.10.1666/06061.1CrossRefGoogle Scholar
Vermeij, G. J. 2015. Gastropod skeletal defenses: land, freshwater, and sea compared. Vita Malacologica 13:125.Google Scholar
Vinn, O. 2013. On the unique isotropic aragonitic tube microstructure of some serpulids (Polychaeta, Annelida). Journal of Morphology 274:478482.Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wagner, P. J. 2001. Gastropod phylogenetics: progress, problems, and implications. Journal of Paleontology 75:11281140.2.0.CO;2>CrossRefGoogle Scholar
Wagner, P. J., and Erwin, D. H.. 2006. Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology 32:316337.CrossRefGoogle Scholar
Wainwright, P. C., and Reilly, S. M., eds. 1994. Ecological morphology. University of Chicago Press, Chicago.Google Scholar
Wainwright, W. D., Biggs, S. A., Currey, J. D., and Gosline, J. M.. 1976. Mechanical design in organisms. Princeton University Press, Princeton, N.J.Google Scholar
Wake, D. B. 1991. Homoplasy: the result of natural selection, or evidence of design limitations? American Naturalist 138:543567.Google Scholar
Wake, D. B., Wake, M. H., and Specht, C. D.. 2011. Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331:10321035.10.1126/science.1188545CrossRefGoogle ScholarPubMed
West, K., and Cohen, A. S.. 1996. Shell microstructure of gastropods from Lake Tanganyika, Africa: adaptation, convergent evolution, and escalation. Evolution 50:672681.10.1111/j.1558-5646.1996.tb03877.xCrossRefGoogle ScholarPubMed
Wiens, J. J., and Graham, C. H.. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics 36:519539.10.1146/annurev.ecolsys.36.102803.095431CrossRefGoogle Scholar
Wiens, J. J., Brandley, M. C., and Reeder, T. W.. 2006. Why does a trait evolve multiple times within a clade? Repeated evolution of snakeline body form in squamate reptiles. Evolution 60:123141.Google ScholarPubMed
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Davies, T. J., Grytnes, J. A., and Harrison, S. P.. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13:13101324.10.1111/j.1461-0248.2010.01515.xCrossRefGoogle ScholarPubMed
Wilson, B. 1969. Use of the propodium as a swimming organ in an ancillid (Gastropoda: Olividae). Veliger 11:340342.Google Scholar