Published online by Cambridge University Press: 11 February 2016
Lungfishes are known for, and indeed take their name from, their bimodal respiratory abilities. All three extant genera can use their lungs to extract oxygen from the atmosphere, although their reliance upon this capability differs among taxa. Lungs are considered primitive for the Osteichthyes, however the distinctive buccal pump mode of air gulping exhibited by extant lungfishes appears to be a specialization. It is associated with a number of derived skeletal characters (cranial ribs, long parasphenoid stalk, midline gap between palatal tooth plates) that first appeared during the Devonian. These have been described individually, but in no Devonian lungfish has their three-dimensional (3D) spatial relationship been reconstructed and analyzed. Here we present the 3D morphology of Rhinodipterus, a Mid-Late Devonian lungfish from Australia and Europe, based on synchrotron tomography and conventional microtomography scans.
Unlike less crownward contemporaneous lungfishes such as Griphognathus and Chirodipterus, Rhinodipterus has a full set of skeletal buccal pump components that can be directly compared to those of extant lungfishes, suggesting that it made more extensive use of air breathing than other Gogo or Bergisch Gladbach genera. This is interesting in relation to the environmental context as Gogo and Bergisch Gladbach are both marine, contrasting with the frequently hypoxic tropical to subtropical fresh water environments inhabited by modern lungfishes. The evolution of buccal pump-supported lung ventilation was evidently not necessarily associated with a transition to non-marine habitats.