Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:08:19.788Z Has data issue: false hasContentIssue false

Punctuated changes in the morphology of an endemic diatom from Lake Titicaca

Published online by Cambridge University Press:  18 January 2018

Trisha L. Spanbauer
Affiliation:
Department of Earth and Atmospheric Sciences and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, U.S.A. E-mail: tspanbauer@austin.utexas.edu; trishaspanbauer@gmail.com.
Sherilyn C. Fritz
Affiliation:
Department of Earth and Atmospheric Sciences and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, U.S.A. E-mail: tspanbauer@austin.utexas.edu; trishaspanbauer@gmail.com.
Paul A. Baker
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina 27708, U.S.A.

Abstract

High levels of biodiversity and endemism in ancient lakes have motivated research on evolutionary processes in these systems. Drill-core records from Lake Titicaca (Bolivia, Peru), an ancient lake in the high-elevation Altiplano, record the history of climate, landscape dynamics, and diatom evolution. That record was used to examine the patterns and drivers of morphological evolution of an endemic species complex of diatoms in the lake, the Cyclostephanos andinus complex. In an attempt to delineate species within the complex based on morphology, no discernible evidence was found for species separation based on an ordination analysis of multiple characters, but multiple populations were detected based on the distribution of valve size in individual samples. Likelihood modeling of phyletic evolution showed that size evolved through punctuated change. Correlation of size trends with environmental variables indicates that C. andinus size responded to regional environmental change driven by global processes that influenced Lake Titicaca by affecting lake level and thermal stratification.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.Google Scholar
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P.. 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291:640643.Google Scholar
Benton, M. J., and Pearson, P. N.. 2001. Speciation in the fossil record. Trends in Ecology and Evolution 16:405411.CrossRefGoogle ScholarPubMed
Beszteri, B., John, U., and Medlin, L. K.. 2007. Congruent variation at a nuclear and a plastid locus suggests that the diatom Cyclotella meneghiniana is a species complex. European Journal of Phycology 42:4760.Google Scholar
Brooks, J. L. 1950. Speciation in ancient lakes. Quarterly Review of Biology 25:3060.Google Scholar
Cohen, A. S. 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York.Google Scholar
Cross, S. L., Baker, P. A., Seltzer, G. O., Fritz, S. C., and Dunbar, R. B.. 2000. A new estimate of the Holocene low-stand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 10:2132.Google Scholar
D’Agostino, K., Seltzer, G. O., Baker, P. A., Fritz, S. C., and Dunbar, R.. 2002. Late-Quaternary lowstands of Lake Titicaca (Peru/Bolivia): evidence from high-resolution seismic data. Palaeogeography, Palaeoclimatology, Palaeoecology 179:97111.CrossRefGoogle Scholar
Dejoux, C., and Iltis, A. E.. 1992. Lake Titicaca: a synthesis of limnological knowledge. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Drebes, G. 1977. Sexuality. Pp. 250283 in D. Werner, ed. The biology of diatoms. University of California Press, Berkeley.Google Scholar
Edlund, M. B., and Stoermer, E. F.. 2000. A 200,000-year, high-resolution record of diatom productivity and community makeup from Lake Baikal shows high correspondence to the marine oxygen-isotope record of climate change. Limnology and Oceanography 45:948962.Google Scholar
Edlund, M. B., Levkov, Z., Soninkhishig, N., Krstic, S., and Nakov, T.. 2006. Diatom species flocks in large ancient lakes: the Navicula reinhardtii complex from Lakes Hövsgöl (Mongolia) and Prespa (Macedonia). Pp. 6174 in A. Witkowski, ed. Proceedings of the 18th International Diatom Symposium 2004. Biopress, Bristol, U.K.Google Scholar
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115 in T. J. M. Schopf, ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Flaxman, S. M., Wacholder, A. C., Feder, J. L., and Nosil, P.. 2014. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Molecular Ecology 23:40744088.Google Scholar
Fritz, S. C., Baker, P. A., Ekdahl, E., Seltzer, G. O., and Stevens, L. R. 2010. Millennial-scale climate variability during the last glacial period in the tropical Andes. Quaternary Science Reviews 29:10171024.CrossRefGoogle Scholar
Fritz, S. C., Baker, P. A., Seltzer, G. O., Ballantyne, A., Tapia, P. M., Cheng, H., and Edwards, R. L.. 2007. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quaternary Research 68:410420.Google Scholar
Fritz, S. C., Baker, P. A., Tapia, P., Spanbauer, T., and Westover, K.. 2012. Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318:93103.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science 276:l28.Google Scholar
Gould, S. J., and Eldredge, N.. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.CrossRefGoogle Scholar
Hunt, G. 2008a. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. In P. H. Kelley, and R. K. Bambach, eds. From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontological Society Papers 14:117–131. Paleontological Society, Pittsburgh, Pa.Google Scholar
Hunt, G. 2008b. Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360377.CrossRefGoogle Scholar
Jewson, D. H. 1992. Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions of the Royal Society of London B 336:191213.Google Scholar
Jewson, D. H., and Granin, N. G.. 2014. Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. European Journal of Phycology 50:119.Google Scholar
Jewson, D. H., Granin, N. G., Zhdarnov, A. A., Gorbunova, L. A., Bondarenko, N. A., and Gnatovsky, R. Y.. 2008. Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnology and Oceanography 53:11251136.CrossRefGoogle Scholar
Khursevich, G.K., Karabanov, E. B., Prokopenko, A. A., Williams, D. F., Kuzmin, M. I., Fedenya, S. A., and Gvozdkov, A. A.. 2001. Insolation regime in Siberia as a major factor controlling diatom production in Lake Baikal during the past 800,000 years. Quaternary International 80–81:4758.Google Scholar
Koblmuller, S., Sefc, K. M., and Sturmbauer, C.. 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615:520.Google Scholar
Litchman, E., Klausmeier, C. A., and Yoshiyama, K.. 2009. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences USA 106:26652670.Google Scholar
Lundholm, N., Bates, S. S., Baugh, K. A., Bill, B. D., Connell, L. B., Leger, C., and Trainer, V. L.. 2012. Cryptic and pseudo-cryptic diversity in diatoms—with descriptions of Pseudo-nitzschia hasleana sp. nov. and P. fryxelliana sp. nov. Journal of Phycology 48:436454.Google Scholar
MacDonald, K.S., Yampolsky, L., and Duffy, J. E.. 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35:323343.Google Scholar
Mann, D. G. 1999. The species concept in diatoms. Phycologia 38:437495.Google Scholar
Mann, D. G., and Vanormelingen, P.. 2013. An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology 60:414420.Google Scholar
Martens, K. 1997. Speciation in ancient lakes. Trends in Ecology and Evolution 12:177182.Google Scholar
Poulícková, A., Veselá, J., Neustupa, J., and Skaloud, P.. 2010. Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kutz. (Bacillariophyceae) and morphologically similar taxa. Protist 161:353369.Google Scholar
Round, F. E., Crawford, R. M., and Mann, D. G.. 1990. The diatoms. Cambridge University Press, Cambridge.Google Scholar
Rundle, H. D., and Nosil, P.. 2005. Ecological speciation. Ecology Letters 8:336352.Google Scholar
Scheffer, M., and Carpenter, S. R.. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18:648656.Google Scholar
Schön, I., Poux, C., Verheyen, E., and Martens, K.. 2014. High cryptic diversity and persistent lineage segregation in endemic Romecytheridea (Crustacea, Ostracoda) from the ancient Lake Tanganyika (East Africa). Hydrobiologia 739:119131.Google Scholar
Snyder, J. A., Cherepanova, M. V., and Bryan, A.. 2013. Dynamic diatom response to changing climate 0–1.2 Ma at Lake El’gygytgyn, Far East Russian Arctic. Climates of the Past 9:13091319.CrossRefGoogle Scholar
Stone, J. R., and Fritz, S. C.. 2004. Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic:benthic ratios. Limnology and Oceanography 49:15401548.Google Scholar
Tapia, P. M., Theriot, E. C., Fritz, S. C., Cruces, F., and Rivera, P.. 2004. Distribution and morphometric analysis of Cyclostephanos andinae comb. nov., a planktonic diatom from the Central Andes. Diatom Research 19:311327.Google Scholar
Theriot, E. C., Carney, H. J., and Richerson, P. J.. 1985. Morphology, ecology and systematics of Cyclotella andina sp. nov. (Bachillariophyceae) from Lake Titicaca, Peru-Bolivia. Phycologia 24:381387.Google Scholar
Theriot, E. C., Fritz, S. C., Whitlock, C., and Conley, D. J.. 2006. Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology 32:3854.Google Scholar
Van Bocxlaer, B., Van Damme, D., and Feibel, C. S.. 2008. Gradual versus punctuated equilibrium evolution in the Turkana basin molluscs: evolutionary events or biological invasions? Evolution 62:511520.Google Scholar
Verdy, A., Follows, M., and Flierl, G.. 2009. Optimal phytoplankton cell size in an allometric model. Marine Ecology Progress Series 379:112.Google Scholar
Wagner, B., Wilke, T., Krastel, S., Zanchettta, G., Sulpizio, R., Reicherter, K., Leng, M. J., Grazhdani, A., Trajanovski, S., Francke, A., Lindhorst, K., Levkov, Z., Cvetkoska, A., Reed, J. M., Zhang, X., Lacey, J. H., Wonik, T., Baumgarten, H., and Vogel, H.. 2014. The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid. Scientific. Drilling 17:1929.Google Scholar
Willen, E. 1991. Planktonic diatoms—an ecological review. Algological Studies 62:69106.Google Scholar
Winder, M., Reuter, J. E., and Schladow, S. G.. 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society of London B 276:427435.Google Scholar