Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T04:34:23.837Z Has data issue: false hasContentIssue false

African origin of caviomorph rodents is indicated by incisor enamel microstructure

Published online by Cambridge University Press:  08 February 2016

Thomas Martin*
Affiliation:
Institut für Paläontologie, Freie Universität Berlin, Malteserstrasse 74-100, D-12249 Berlin, Germany

Abstract

The same three subtypes of derived multiserial Hunter-Schreger bands are found in the incisor enamel of African phiomorph rodents from the late Eocene-early Oligocene and the oldest South American Caviomorpha from the Deseadan (late Oligocene). The synapomorphies contained therein, especially arrangement and orientation of interprismatic matrix, make an African origin of the Caviomorpha very probable. A North American origin of the Caviomorpha is thus rejected, as only primitive pauciserial Hunter-Schreger bands have been observed in possible ischyromyoid caviomorph ancestors. A multiserial Schmelzmuster apparently never evolved in the North American rodent fauna.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Boyde, A. 1969. Electron microscopic observations relating to the nature and development of prism decussation in mammalian dental enamel. Bulletin du Groupement International pour la Recherche Scientifique en Stomatologie 12:151207.Google Scholar
Boyde, A. 1978. Development of the structure of the enamel of the incisor teeth in the three classical subordinal groups of the Rodentia. Pp. 4358in Butler, P. M. and Joysey, K. A., eds. Development, function, and evolution of teeth. Academic Press, London.Google Scholar
Dauphin, Y., Denis, A., and Denys, C. 1988. Les différents types d'émail chez les rongeurs (Mammalia): conséquences d'un réexamen de leurs caractéristiques et de leurs définitions. Comptes rendus hebdomadaires des Séances de l'Académie des Sciences, Paris, II 306:9398.Google Scholar
Dawson, M. R. 1977. Late Eocene rodent radiation: North America, Europe and Asia. Geobios, Mémoire special 1:195209.CrossRefGoogle Scholar
Flynn, L. J., and Wahlert, J. H. 1978. SEM study of rodent incisors: preparation and viewing. Curator 21 4:303310.CrossRefGoogle Scholar
Flynn, L. J., Jacobs, L. L., and Cheema, I. U. 1986. Baluchimyinae, a new ctenodactyloid rodent subfamily from the Miocene of Baluchistan. American Museum Novitates 2841:158.Google Scholar
Graur, D., Hide, W. A., and Li, W. H. 1991. Is the guinea-pig a rodent? Nature (London) 351:649652.CrossRefGoogle ScholarPubMed
Hoffstetter, R. 1969. Un primate de l'Oligocène inférieur sudaméricain: Branisella boliviana gen. et sp. nov. Comptes rendus hebdomadaires des Séances de l'Académie des Sciences, Paris, D 269:434437.Google Scholar
Hoffstetter, R. 1972. Origine et dispersion des rongeurs hystricognathes. Comptes rendes hebdomadaires des Séances de l'Académie des Sciences, Paris, D 274:28672870.Google Scholar
Hoffstetter, R. 1975. El origen de los Caviomorpha y el problema de los Hystricognathi (Rodentia). Actas del primer congreso Argentino de paleontologia y bioestratigrafia 2:515528. Tucumán, Argentina.Google Scholar
Hoffstetter, R., and Lavocat, R. 1970. Découverte dans le Déséadien de Bolivie des genres pentalophodontes appuyant les affinités africaines des rongeurs caviomorphes. Comptes rendus hebdomadaires des Séances de l'Académie des Sciences, Paris, D 271:172175.Google Scholar
Hussain, S. T., de Bruijn, H., and Leinders, J. M. 1978. Middle Eocene rodents from the Kala Chitta Range (Punjab, Pakistan). I. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B 81:74112.Google Scholar
Kawai, N. 1955. Comparative anatomy of bands of Schreger. Okajimas folia anatomica Japonica 27:115131.CrossRefGoogle ScholarPubMed
Korth, W. W. 1984. Earliest Tertiary evolution and radiation of rodents in North America. Bulletin of Carnegie Museum of Natural History 24:171.CrossRefGoogle Scholar
Korvenkontio, V. A. 1934. Mikroskopische Untersuchungen an Nagerinzisiven unter Hinweis auf die Schmelzstruktur der Backenzähne. Annales Zoologici Societatis Zoologicae-Botanicae Fennicae Vanamo 2:1274.Google Scholar
Lavocat, R. 1969. La systématique des rongeurs hystricomorphes et la dérive des continents. Comptes rendus hebdomadaires des Séances de l'Académie des Sciences, Paris D 269:14961497.Google Scholar
Lavocat, R. 1971. Affinités systématiques des caviomorphes et des phiomorphes et origine africaine des caviomorphes. Anais da Academia Brasileira de Cièncias (suplemento) 43:515522.Google Scholar
Lavocat, R. 1973. Les rongeurs du Miocène d'Afrique orientale. I. Miocène inférieur. Mèmoires et Travaux de l'Institut de Montpellier de l'Ecole Pratique des Hautes Études 1:1284.Google Scholar
Lavocat, R. 1974a. The interrelationships between the African and South American rodents and their bearing on the problem of the origin of South American monkeys. Journal of Human Evolution 3:323326.CrossRefGoogle Scholar
Lavocat, R. 1974b. What is an hystricomorph? Symposia of the Zoological Society of London 34:720.Google Scholar
Lavocat, R. 1981. The implications of rodent paleontology and biogeography to the geographical sources and origin of platyrrhine primates. Pp. 93102in Ciochon, R. L. and Chiarelli, A. B., eds. Evolutionary biology of the New World monkeys and continental drift. Plenum, New York.Google Scholar
Lehner, J., and Plenk, H. 1936. Die Zähne. Pp. 447708in von Möllendorff, W., ed. Handbuch der mikroskopischen Anatomie des Menschen 5/3. Berlin.CrossRefGoogle Scholar
Li, C.-K., and Ting, S. Y. 1985. Possible phylogenetic relationships of Asiatic eurymylids and rodents, with comments on the minotonids. Pp. 3558in Luckett and Hartenberger 1985.Google Scholar
Luckett, W. P., and Hartenberger, J.-L., eds. 1985. Evolutionary relationships among rodents: a multidisciplinary analysis. North Atlantic Treaty Organization Advanced Science Institute Series A 92. Plenum, New York.CrossRefGoogle Scholar
Martin, T. 1992. Schmelzmikrostruktur in den Inzisiven altund neuweltlicher hystricognather Nagetiere. Palaeovertebrata, Mémoire extraordinaire:1168.Google Scholar
Mossmann, H. W., and Luckett, W. P. 1968. Phylogenetic relationships of the African mole rat, Bathyergus janetta, as indicated by the fetal membranes. American Zoologist 8:806.Google Scholar
Patterson, B., and Wood, A. E. 1982. Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bulletin of the Museum of Comparative Zoology 149:371543.Google Scholar
Pfretzschner, H. U. 1988. Structural reinforcement and crack propagation in enamel. Mémoires du Muséum National d'Histoire Naturelle, Paris, C 53:133143.Google Scholar
Pfretzschner, H. U.In press. Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Großsäugern. Palaeontographica, Abt. A.Google Scholar
Sahni, A. 1985. Enamel structure of early mammals and its role in evaluating relationships among rodents. Pp. 133150in Luckett and Hartenberger 1985.Google Scholar
Simpson, G. G. 1950. History of the fauna of Latin America. American Scientist 38:361389.Google Scholar
Tarling, D. H. 1982. Land bridges and plate tectonics. Geobios, Mémoire spécial 6:361374.CrossRefGoogle Scholar
Tomes, J. 1850. On the structure of the dental tissues of the order Rodentia. Philosophical Transactions of the Royal Society of London 1850:529567.Google Scholar
von Koenigswald, W. 1980. Schmelzmuster und Morphologie in den Molaren der Arvicolidae (Rodentia). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 539:1129.Google Scholar
von Koenigswald, W. 1985. Evolutionary trends in the enamel of rodent incisors. Pp. 403422in Luckett and Hartenberger 1985.Google Scholar
von Koenigswald, W., and Pfretzschner, H. U. 1991. Biomechanics in the enamel of mammalian teeth. Pp. 113125in Schmidt-Kittler, N. and Vogel, K., eds. Constructional morphology and biomechanics. Springer, Berlin-Heidelberg.CrossRefGoogle Scholar
von Koenigswald, W., Rensberger, J. M., and Pfretzschner, H. U. 1987. Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature (London) 328:150152.CrossRefGoogle ScholarPubMed
Wahlert, J. H. 1968. Variability of rodent incisor enamel as viewed in thin section, and the microstructure of the enamel in fossil and Recent rodent groups. Breviora of the Museum of Comparative Zoology 309:118. Cambridge, Mass.Google Scholar
Wahlert, J. H. 1984. Hystricomorphs, the oldest branch of the Rodentia. Annals of the New York Academy of Sciences 435:356357.CrossRefGoogle Scholar
Wahlert, J. H. 1989. The three types of incisor enamel in rodents. Pp. 716in Black, C. C. and Dawson, M. R., eds. Papers on fossil rodents in honour of Albert Elmer Wood, Science Series 33. Los Angeles County Museum.Google Scholar
Wood, A. E. 1950. Porcupines, paleogeography and parallelism. Evolution 4:8798.CrossRefGoogle Scholar
Wood, A. E. 1972. An Eocene hystricognathous rodent from Texas: its significance in interpretations of continental drift. Science 175:12501251.CrossRefGoogle ScholarPubMed
Wood, A. E. 1973. Eocene rodents, Pruett Formation, southwest Texas; their pertinence to the origin of the South American Caviomorpha. The Pearce-Sellards Series 20:140. Texas Memorial Museum, Austin.Google Scholar
Wood, A. E. 1974. The evolution of the Old World and New World hystricomorphs. Symposia of the Zoological Society of London 34:2160.Google Scholar
Wood, A. E. 1975. The problem of the hystricognathous rodents. Papers on Paleontology 12:7580. University of Michigan.Google Scholar
Wood, A. E. 1977. The Rodentia as clues to Cenozoic migrations between the Americas and Europe and Africa. Pp. 95109 in West, R. M., ed. Paleontology and plate tectonics. Milwaukee Museum Special Publications in Biology and Geology 2:95–109.Google Scholar
Wood, A. E. 1981. The origin of the caviomorph rodents from a source in middle America: a clue to the area of origin of the platyrrhine primates. Pp. 7991in Ciochon, R. L. and Chiarelli, A. B., eds. Evolutionary biology of the New World monkeys and continental drift. Plenum, New York.Google Scholar
Wood, A. E. 1985. The relationships, origin and dispersal of the hystricognathous rodents. Pp. 475513in Luckett and Hartenberger 1985.Google Scholar
Woods, C. A. 1972. Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents. Bulletin of the American Museum of Natural History 147:115198.Google Scholar
Wyss, A. R., Flynn, J. J., Norell, M. A., Swisher, C. C., Charrier, R., Novacek, M. J., and McKenna, M. C. 1993. South America's earliest rodent and recognition of a new interval of mammalian evolution. Nature (London) 365:434437.CrossRefGoogle Scholar