Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T06:34:34.226Z Has data issue: false hasContentIssue false

Anatomy of an invasion: the trans-Arctic interchange

Published online by Cambridge University Press:  14 July 2015

Geerat J. Vermeij*
Affiliation:
Department of Geology, University of California, Davis, California 95616

Abstract

When the Bering Strait between Alaska and Siberia opened about 3.5 Ma during the early Pliocene, cool-temperate and polar marine species were able to move between the North Pacific and Arctic-Atlantic basins. In order to investigate the extent, pattern, and dynamics of this trans-Arctic interchange, I reviewed the Recent and fossil distributions of post-Miocene shell-bearing Mollusca in each of five northern regions: (1) the northeastern Atlantic (Lofoten Islands to the eastern entrance of the English Channel and the northern entrance of the Irish Sea), (2) northwestern Atlantic (southern Labrador to Cape Cod), (3) northeastern Pacific (Bering Strait to Puget Sound), (4) northwestern Pacific (Bering Strait to Hokkaido and the northern Sea of Japan), and (5) Arctic (areas north of the Lofoten Islands, southern Labrador, and Bering Strait).

I have identified 295 molluscan species that either took part in the interchange or are descended from taxa that did. Of these, 261 are of Pacific origin, whereas only 34 are of Arctic-Atlantic origin. Various analyses of the pattern of invasion confirm earlier work, indicating that there is a strong bias in favor of species with a Pacific origin.

A geographical analysis of invaders implies that, although trans-Arctic interchange contributed to a homogenization of the biotas of the northern oceans, significant barriers to dispersal exist and have existed for trans-Arctic invaders within the Arctic-Atlantic basin. Nevertheless, trans-Arctic invaders in the Atlantic have significantly broader geographical ranges than do taxa with a pre-Pliocene history in the Atlantic.

Among the possible explanations for the asymmetry of trans-Arctic invasion, two hypotheses were explicitly tested. The null hypothesis of diversity states that the number of invaders from a biota is proportional to the total number of species in that biota. Estimates of Recent molluscan diversity show that the North Pacific is 1.5 to 2.7 times richer than is the Arctic-Atlantic, depending on how faunistic comparisons are made. This difference in diversity is much smaller than is the asymmetry of trans-Arctic invasion in favor of Pacific species. Rough estimates of regional Pliocene diversity suggest that differences in diversity during the Pliocene were smaller than they are in the Recent fauna. The null hypothesis was therefore rejected.

The hypothesis of ecological opportunity states that the number of invaders to a region is proportional to the number of species that became extinct there. The post-Early Pliocene magnitude of extinction was lowest in the North Pacific, intermediate in the northeastern Atlantic, and probably highest in the northwestern Atlantic. The absolute number and faunistic importance of post-Early Pliocene invaders (including trans-Arctic species, as well as taxa previously confined to warm-temperate waters and western Atlantic species that previously occurred only in the eastern Atlantic) was lowest in the North Pacific, intermediate in the northeastern Atlantic, and highest in the northwestern Atlantic. Further support for the hypothesis of ecological opportunity comes from the finding that hard-bottom communities, especially those in the northwestern Atlantic, show a higher representation of molluscan species of Pacific origin, and are likely to have been more affected by climatic events, than were communities on unconsolidated sandy and muddy bottoms. Support for the hypothesis does not rule out other explanations for the observed asymmetry of trans-Arctic invasion.

A preliminary study of species-level evolution within lineages of trans-Arctic invaders indicates that anagenesis and cladogenesis have been more frequent among groups with Pacific origins than among those with Atlantic origins, and that the regions within the Arctic-Atlantic basin with the highest absolute number and faunistic representation of invaders (western Atlantic and Arctic) are the regions in which speciation has been least common among the invaders. The asymmetry of invasion is therefore distinct from the asymmetry of species-level evolution of invaders in the various northern marine regions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, R. T. 1974. American Seashells. Second edition. Van Nostrand Reinhold; New York.Google Scholar
Allison, R. C., and Marincovich, L. Jr. 1982 (1981). A Late Oligocene or earliest Miocene molluscan fauna from Sitkinak Island, Alaska. United States Geological Survey Professional Paper 1233:111.Google Scholar
Andriashev, A. P. 1990. On a probability of the transocean (non-Arctic) pathways of some North Pacific secondarily deep-sea fishes in the North Atlantic and Arctic depths (Family Liparididae as an example). Zoologicheskii Zhurnal 69:6167 [in Russian].Google Scholar
Baxter, R. 1987. Mollusks of Alaska: a Listing of All Mollusks, Freshwater, Terrestrial, and Marine Reported From the State of Alaska, With Locations of the Species Types, Maximum SIzes and Marine Depths Inhabited. Shells and Sea Life; Bayside, California.Google Scholar
Bernard, F. R. 1979a. Bivalve mollusks of the western Beaufort Sea. Contributions in Science, Natural History Museum of Los Angeles County 313:180.Google Scholar
Bernard, F. R. 1979b. Identification of the living Mya (Bivalvia: Myoidea). Venus 38:185204.Google Scholar
Bernard, F. R. 1983. Catalogue of the living Bivalvia of the eastern Pacific Ocean: Bering Strait to Cape Horn. Canadian Special Publications in Fisheries and Aquatic Sciences 61:1102.Google Scholar
Bouchet, P., and Warén, A.. 1979. The abyssal molluscan fauna of the Norwegian Sea and its relation to other faunas. Sarsia 64:211243.Google Scholar
Bouchet, P., and Warén, A.. 1980. Revisions of the northeast Atlantic bathyal and abyssal Turridae (Mollusca: Gastropoda). Journal of Molluscan Studies, Supplement 8:1119.Google Scholar
Bouchet, P., and Warén, A.. 1985. Revision of the northeast Atlantic bathyal and abyssal Neogastropoda excluding Turridae (Mollusca, Gastropoda). Bolletino Malacologico, Supplemento 1:123296.Google Scholar
Bouchet, P., and Warén, A.. 1986. Revision of the northeast Atlantic bathyal and abyssal Aclididae, Eulimidae, Epitoniidae (Mollusca, Gastropoda). Bolletino Malacologico, Supplemento 2:299576.Google Scholar
Bousfield, E. L., and Laubitz, D. R.. 1972. Station lists and new distributional records of littoral marine invertebrates from the Canadian Atlantic and New England region. National Museums of Canada Publications in Biological Oceanography 5:151.Google Scholar
Briggs, J. C. 1967. Relationship of the tropical shelf regions. Studies in Tropical Oceanography 5:569578.Google Scholar
Briggs, J. C. 1970. A faunal history of the North Atlantic. Systematic Zoology 19:1934.CrossRefGoogle Scholar
Briggs, J. C. 1974a. Marine Zoogeography. McGraw Hill; New York.Google Scholar
Briggs, J. C. 1974b. Operation of zoogeographic barriers. Systematic Zoology 23:248256.Google Scholar
Carter, L. D., Brigham-Grette, J., Marincovich, L. Jr., Pease, V. L., and Hillhouse, J. W.. 1986. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate. Geology 14:675678.Google Scholar
Christie, W. J. 1974. Changes in the fish species composition of the Great Lakes. Journal of the Fisheries Research Board of Canada 31:827854.Google Scholar
Clarke, A. H. 1974. Molluscs from Baffin Bay and the northern North Atlantic Ocean. National Museums of Canada Publications in Biological Oceanography 7:123.Google Scholar
Coachman, L. K., and Aagaard, K.. 1981. Reevaluation of water transports in the vicinity of Bering Strait. Pp. 95110. In Hood, D. W., and Calder, J. A. (eds.), The Eastern Bering Sea Shelf: Oceanography and Resources. Volume I. University of Washington Press; Seattle.Google Scholar
Coachman, L. K., Aagaard, K., and Tripp, R. B.. 1975. Bering Strait: the Regional Physical Oceanography. University of Washington Press; Seattle.Google Scholar
Coan, E. V. 1969. Recognition of an eastern Pacific Macoma in the Coralline Crag of England and its biogeographic significance. Veliger 11:277279.Google Scholar
Coan, E. V. 1971. The northwest American Tellinidae. Veliger 14(Supplement):163.Google Scholar
Dana, T. F. 1975. Development of contemporary eastern Pacific coral reefs. Marine Biology 33:355374.Google Scholar
Darlington, P. J. Jr. 1959. Area, climate and evolution. Evolution 13:488510.Google Scholar
Darwin, C. 1872. The Origin of Species by Natural Selection or the Preservation of Favored Races in the Struggle for Life. Sixth edition. Colliers; New York.Google Scholar
Davies, A. M. 1929. Faunal migrations since the Cretaceous period. Proceedings of the Geologists' Association 40:307327.Google Scholar
Diamond, J. M., and Veitsch, C. R.. 1981. Extinctions and introductions in the New Zealand avifauna: cause and effect? Science 211:499501.Google Scholar
Durham, J. W., and MacNeil, F. S.. 1967. Cenozoic migrations of marine invertebrates through the Bering Strait region. Pp. 326349. In Hopkins, D. M. (ed.), The Bering Land Bridge. Stanford University Press; Stanford, California.Google Scholar
Ekman, S. 1953. Zoogeography of the Sea. Sidgwick and Jackson; London.Google Scholar
Estes, J. A., and Steinberg, P. D.. 1988. Predation, herbivory, and kelp evolution. Paleobiology 14:1936.CrossRefGoogle Scholar
Feldman, R. M. 1981. Paleobiogeography of North American lobsters and shrimps (Crustacea, Decapoda). Géobios 14:449468.Google Scholar
Franz, D. R., and Merrill, A. S.. 1980a. Molluscan distribution patterns on the continental shelf of the mid-Atlantic Bight (northwest Atlantic). Malacologia 19:209225.Google Scholar
Franz, D. R., and Merrill, A. S.. 1980b. The origins and determinants of distribution of molluscan faunal groups on the shallow continental shelf of the northwest Atlantic. Malacologia 19:227248.Google Scholar
Franz, D. R., Worley, E. K., and Merrill, A. S.. 1981. Distribution patterns of common seastars of the Middle Atlantic continental shelf of the northwest Atlantic (Gulf of Maine to Cape Hatteras). Biological Bulletin 160:394418.Google Scholar
Froget, C., Thommeret, J., and Thommeret, Y.. 1972. Mollusques septentrionaux en Méditerranée Occidentale: datation par le14C. Palaeogeography, Palaeoclimatology, Palaeoecology 12:285293.Google Scholar
Gardner, J. 1928. The molluscan fauna of the Alum Bluff Group of Florida. Part V. Tellinacea, Solenaceae, Mactracea, Myacea, Molluscoidea. United States Geological Survey Professional Paper 142-E:185240.Google Scholar
Geys, J. F., and Marquet, R.. 1979. Strongylocentrotus pallidus (G. O. Sars, 1871), an addition to the echinoderm fauna of the Scaldisian (Pliocene) in Belgium. Mededelingen van de Werkgroep voor Tertiare en Kwartaire Geologie 16:131138.Google Scholar
Gladenkov, Yu. B. 1972. Neogena kamchatki. Akademiya Nauk SSSR Geologicheskii Instituta Trudy 214:1252.Google Scholar
Gladenkov, Yu. B. 1979. Cenozoic molluscan assemblages in northern regions of the Atlantic and Pacific Oceans. International Geological Reviews 21:880890.Google Scholar
Gladenkov, Yu. B., Sinelnikova, V. N., and Titova, L. V.. 1988. Etapnost razvitiya fauny shelfovykh bassenov neogena kamchatki (na primere buktsinid). Pp. 58135. In Litologiya i Stratigrafiya Mezozoya i Kainozoya Vostochnykh Raionov SSSR. “Nauka”; Moscow.Google Scholar
Glibert, M., and van de Poel, L.. 1970. Les Bivalvia fossiles du Cénozoïque étranger des collections de l'Institut Royal des Sciences Naturelles de Belgiques. VI. Oligodentina (2): Astartidontina et Septibranchida. Mémoires de l'Institut Royale des Sciences Naturelles de Belgique (ser. 2) 84:1185.Google Scholar
Glynn, P. W., and Wellington, G. M.. 1983. Corals and Coral Reefs of the Galápagos Islands, with an Annotated List of the Scleractinian Corals of the Galápagos by John W. Wells. University of California Press; Berkeley.Google Scholar
Golikov, A. N. 1980. Molliuski Buccininae Mirovoga Okeana. “Nauka”; Leningrad.Google Scholar
Golikov, A. N., and Gulbin, V. V.. 1977. Prosobranchial gastropods of the Kurile Islands. II. Orders Hamiglossa-Homeostropha. Pp. 172268. In Coast Waters of the Kurile Islands. “Nauka”; Moscow [In Russian].Google Scholar
Golikov, A. N., and Gulbin, V. V.. 1978. Prosobranchial gastropods of the Kurile Islands. I. Orders Docoglossa-Entomostoma. Pp. 159223. In Kussakin, O. G. (ed.), Fauna and Vegetation of the Shelf of the Kurile Islands. Academy of Sciences, USSR, Far East Science Center, Institute of Marine Biology; Vladivostok [In Russian].Google Scholar
Goukov, A. N., and Kussakin, O. G.. 1978. Rakovinnye Briukhonogie Molliuski Litorali Morei SSSR. “Nauka”; Leningrad.Google Scholar
Golikov, A. N., and Scarlato, O. A.. 1967. Molluscs of the Possiet Bay (the Sea of Japan) and their ecology. Akademiya Nauka Zoological Institute Trudy 42:5154 [In Russian].Google Scholar
Golikov, A. N., and Scarlato, O. A.. 1985. Shell-bearing gastropods and bivalves of the shelf of south Sakhalin and their ecology. Issledovaniia Fauny Morei 30:368490 [In Russian].Google Scholar
Golikov, A. N., and Sirenko, B. I.. 1988a. The naticid gastropods in the boreal waters of the western Pacific and Arctic Oceans. Malacological Reviews 21:141.Google Scholar
Golikov, A. N., and Sirenko, B. I.. 1988b. Novye dannye k postoeniyu sistemy podsemeistva Buccininae (Gastropoda Pectinibranchia Bucciniformes). Trudy Zoologicheskogo Instituta Akademiya Nauka SSSR 146:85105.Google Scholar
Golikov, A. N., Gulbin, V. V., and Sirenko, B. I.. 1987a. Bryukhonogie perednezhabernye mollyuski shelfa ostrova Moneron (Yaponskoe More). I. Otryady Patelliformes-Calyptraeiformes. Pp. 2230. In Fauna i Raspredelenie Mollyuskov: Severnaya Patsifika i Polyarnui Bassein. Akademiya Nauk; Vladivostok.Google Scholar
Golikov, A. N., Gulbin, V. V., and Sirenko, B. I.. 1987b. Bryukhonogie perednezhabernye mollyuski shelfa ostrova Moneron (Yaponskoe More). II. Otryady Naticiformes-Eulimiformes. Pp. 4156. In Fauna i Respredelenie Mollyuskov: Severnaya Patsifika i Polyarnui Bassein. Akademiya Nauka SSSR; Vladivostok.Google Scholar
Goryachev, V. N. 1987. K istorii formirovaniya fauny Neptunea (Gastropoda, Buccinidae) severnoipatsifiki. Pp. 5764. In Fauna i Raspredelenie Mollyuskov: Severnaya Patsifika i Polyarnyui Bassein. Akademiya Nauk SSSR; Vladivostok.Google Scholar
Grant, W. S. 1986. Biochemical genetic divergence between Atlantic, Clupea harengus, and Pacific, C. pallasi, herring. Copeia 1986:714719.CrossRefGoogle Scholar
Grant, W. S., and Stahl, G.. 1988. Evolution of Atlantic and Pacific cod: loss of genetic variation and gene expression in Pacific cod. Evolution 42:138146.Google Scholar
Habe, T. 1977. Systematics of Molluscs in Japan. Bivalvia and Scaphopoda. Tokyo [In Japanese].Google Scholar
den Hartog, C. 1970. The Sea-Grasses of the World. North-Holland; Amsterdam.Google Scholar
Herman, Y., and Hopkins, D. M.. 1980. Arctic oceanic climate in Late Cenozoic time. Science 209:457462.Google Scholar
Herman, Y., Osmond, J. K., and Somayajulu, B. L.. 1989. Late Neogene Arctic paleoceanography: micropaleontology, stable isotopes, and chronology. Pp. 581655. In Herman, Y. (ed.), The Arctic Seas: Climatology, Oceanography, Geology, and Biology. Van Nostrand Reinhold; New York.Google Scholar
Hoagland, K. E. 1977. Systematic review of fossil and Recent Crepidula and discussion of evolution of the Calyptraeidae. Malacologia 16:353420.Google Scholar
Höisaeter, T. 1986. An annotated check-list of marine molluscs of the Norwegian coast and adjacent waters. Sarsia 71:73145.Google Scholar
Holthuis, L. B. 1974. The lobsters of the superfamily Nephropidea of the Atlantic Ocean (Crustacea: Decapoda). Bulletin of Marine Science 24:723784.Google Scholar
Honda, Y. 1986. A Paleogene molluscan fauna from Hokkaido, northern Japan. Palaeontological Society of Japan Special Paper 29:316.Google Scholar
Hopkins, D. M. 1967. The Cenozoic history of Beringia: a synthesis. Pp. 451484. In Hopkins, D. M. (ed.), The Bering Land Bridge. Stanford University Press; Palo Alto, California.Google Scholar
Hopkins, D. M. 1973. Sea level history in Beringia during the past 250,000 years. Quaternary Research 3:520540.CrossRefGoogle Scholar
Jablonski, D., and Valentine, J. W.. 1990. From regional to total geographical ranges: testing the relationship in Recent Bivalvia. Paleobiology 16:126142.CrossRefGoogle Scholar
Janssen, R. 1979. Revision der Bivalvia des Oberoligozäns (Chattium, Kasseler Meeressand). Geologische Abhandlungen Hessen 78:1181.Google Scholar
Kafanov, A. I. 1978. Centers of origin and some features of ecological evolution of cold-water malacofauna of the northern hemisphere. Soviet Journal of Marine Biology 4:485489.Google Scholar
Kafanov, A. I. 1980. Systematics of the subfamily Clinocardiinae Kafanov, 1975 (Bivalvia, Cardiidae). Malacologia 19:297328.Google Scholar
Kafanov, A. I. 1984. The Cenozoic history of the molluscan fauna of the North Pacific shelf. Canadian Translations in Fisheries and Aquatic Sciences 5052:177.Google Scholar
Kafanov, A. I. 1987. Podsemeistvo Mytilinae Rafinesque 1815 (Bivalvia, Mytilidae) v Kainozoe severnoi Patsifiki. Pp. 65103. In Fauna i Raspredelenie Mollyuskov: Severnaya Patsifika i Polyarnui Bassein. Akademiya Nauk SSSR; Vladivostok.Google Scholar
Kantor, Yu. I. 1990. Gastropods of the Subfamily Volutopsiinae of the World Ocean. “Nauka”; Moscow [In Russian].Google Scholar
Knudsen, J. 1949. Amphineura. Zoology of Iceland 4:111.Google Scholar
Knudsen, J. 1985. Abyssal Mollusca of the Arctic Ocean. Journal of Conchology 32:97107.Google Scholar
Kosuge, S. 1979. Report on the Mollusca collected from Ishikari Bay and its adjacent waters by the R. V. Tansei-Maru during Cruise KT-67-7 (1967). Bulletin of the Institute of Malacology of Tokyo 1:912.Google Scholar
Kozloff, E. N. 1987. Marine Invertebrates of the Pacific Northwest. University of Washington Press; Seattle.Google Scholar
Kuroda, T., and Kinoshita, T.. 1951. A catalogue of the marine molluscan shells of Hokkaido. Bulletin of the Hokkaido Regional Fisheries Research Laboratory, Fisheries Agency 2:140.Google Scholar
Lee, R. S., and Foster, N. R.. 1985. A distributional list with range extensions of the opisthobranch gastropods of Alaska. Veliger 27:440448.Google Scholar
Lindberg, D. R. 1988a. Recent and fossil species of the genus Erginus from the North Pacific Ocean (Patellogastropoda: Mollusca). Paleobios 12:17.Google Scholar
Lindberg, D. R. 1988b. The Patellogastropoda. Malacological Reviews Supplement 4:3563.Google Scholar
Lindberg, D. R. 1988c. Systematics of the Scurriini (new tribe) of the northeastern Pacific Ocean (Patellogastropoda: Lottiidae). Veliger 30:387394.Google Scholar
Lindstrom, S. C. 1987. Possible sister group and phylogenetic relationships among selected North Pacific and North Atlantic Rhodophyta. Helgoländer Meeresuntersuchungen 41:245260.Google Scholar
Lubinsky, I. 1980. Marine bivalve molluscs of the Canadian central and eastern Arctic: faunal composition and zoogeography. Canadian Bulletin of Fisheries and Aquatic Sciences 2107:1111.Google Scholar
MacNeil, F. S. 1957. Cenozoic megafossils of northern Alaska. United States Geological Survey Professional Paper 294-C:99126.Google Scholar
MacNeil, F. S. 1965. Evolution and distribution of the genus Mya, and Tertiary migrations of Mollusca. United States Geological Survey Professional Paper 483-G:G1G51.Google Scholar
MacNeil, F. S. 1967. Cenozoic pectinids of Alaska, Iceland, and other northern regions. United States Geological Survey Professional Paper 553:157.Google Scholar
MacPherson, E. 1971. The marine molluscs of Arctic Canada: prosobranch gastropods, chitons and scaphopods. National Museums of Canada Publications in Biological Oceanography 3:1149.Google Scholar
Malatesta, A., and Zarlenga, F.. 1986. Northern guests in the Pleistocene Mediterranean Sea. Geologica Romana 25:91154.Google Scholar
Marincovich, L. Jr. 1977. Cenozoic Naticidae (Mollusca: Gastropoda) of the northeastern Pacific. Bulletins of American Paleontology 70:169494.Google Scholar
Marincovich, L. Jr. 1983. Molluscan paleontology, paleoecology, and North Pacific correlations of the Miocene Tachilni Formation, Alaska Peninsula, Alaska. Bulletins of American Paleontology 84:59155.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M. 1982. Mammalian evolution and the Great American Interchange. Science 215:13511357.Google Scholar
McNeil, D. H., and Miller, K. G.. 1990. High-latitude application of 87Sr/86Sr: correlation of Nuwok beds on North Slope, Alaska, to standard Oligocene chronostratigraphy. Geology 18:415418.Google Scholar
Nations, D. 1975. The genus Cancer (Crustacea: Brachyura): systematics, biogeography and fossil record. Natural History Museum of Los Angles County Science Bulletin 23:1104.Google Scholar
Nations, D. 1979. The genus Cancer and its distribution in time and space. Bulletin of the Biological Society of Washington 3:153187.Google Scholar
Nelson, C. M. 1978. Neptunea (Gastropoda: Buccinacea) in the Neogene of the North Pacific and adjacent Bering Sea. Veliger 21:203215.Google Scholar
Nelson, C. M. 1979. The gastropod Beringius (Prosobranchia: Buccinacea) in the late Cenozoic of the North Pacific and Bering Sea. Fourteenth Pacific Science Congress. Pacific Science Association, Committee B, Section B III, Abstracts 2:100101.Google Scholar
Nesis, K. N. 1965. Ecology of Cyrtodaria siliqua and history of the genus Cyrtodaria (Bivalvia: Hiatellidae). Malacologia 3:197210.Google Scholar
Nesis, K. N. 1983. Hypothesis on the origin of western and eastern Arctic distribution areas of marine bottom animals. Soviet Journal of Marine Biology 9:235243.Google Scholar
Nilsson-Cantell, C.-A. 1978. Cirripedia Thoracica and Acrothoracica. Marine Invertebrates of Scandinavia 5. Universitetsvorlaget; Oslo.Google Scholar
Nisiyama, S. 1966. The echinoid fauna in Japan and adjacent regions. Part I. Palaeontological Society of Japan Special Paper 11:1277.Google Scholar
Nisiyama, S. 1968. The echinoid fauna in Japan and adjacent regions. Part II. Paleontological Society of Japan Special Paper 13:1491.Google Scholar
Ockelmann, W. K. 1958. The zoology of East Greenland marine Lamellibranchiata. Medelelser om Grönland 122:1256.Google Scholar
Ogasawara, K. 1986. Notes on origin and migration of the Omma-Manganzian fauna, Japan. Palaeontological Society of Japan Special Paper 29:227244.Google Scholar
Okutani, T., Tagawa, M., and Horikawa, H.. 1988. Gastropods from continental shelf and slope around Japan. Japanese Fisheries Resource Conservation Association; Tokyo.Google Scholar
Okutani, T., Tagawa, M., and Horikawa, H.. 1989. Bivalves from continental shelf and slope around Japan. Japanese Fisheries Resource Conservation Association; Tokyo.Google Scholar
Palumbi, S. R., and Wilson, A. C.. 1990. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44:403415.Google Scholar
Petuch, E. J. 1988a. New gastropods from the Maryland Miocene. Bulletin of Palaeomalacology 1:6982.Google Scholar
Petuch, E. J. 1988b. Neogene History of Tropical American Mollusks: Biogeography and Evolutionary Patterns of Tropical Western Atlantic Mollusca. Coastal Education and Research Foundation; Charlottesville, Virginia.Google Scholar
Platts, E. 1985. An annotated list of the North Atlantic Opisthobranchia. Ophelia Supplement 2:150170.Google Scholar
Popov, S. V. 1983. Pozdne kainozoiskie i sovremennye dvustvorchatye mollyuski semeistva Carditidae SSSR. Akademia Nauk SSSR Paleontologicheskii Institut Trudy 203:1118.Google Scholar
Por, F. D. 1978. Lessepsian Migration: the Influx of Red Sea Biota into the Mediterranean. Springer; Berlin.CrossRefGoogle Scholar
Por, F. D. 1989. The Legacy of Tethys: an Aquatic Biogeography of the Levant. Kluwer; Dordrecht.Google Scholar
Raffi, S. 1986. The significance of marine boreal molluscs in the early Pleistocene fauna of the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 52:267289.Google Scholar
Raffi, S., Stanley, S. M., and Marasti, R.. 1985. Biogeographic patterns and Plio-Pleistocene extinction of Bivalvia in the Mediterranean and southern North Sea. Paleobiology 11:368388.Google Scholar
Ray, C. E. 1976. Geography of phocid evolution. Systematic Zoology 25:391406.Google Scholar
Reid, D. G. 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philosophical Transactions of the Royal Society of London (B) 324:1110.Google Scholar
Reid, D. G. 1990. A cladistic phylogeny of the genus Littorina (Gastropoda): implications for evolution of reproductive strategies and for classification. Hydrobiologia 193:119.Google Scholar
Repenning, C. A. 1967. Palearctic-Nearctic mammalian dispersal in the Late Cenozoic. Pp. 288311. In Hopkins, D. M. (ed.), The Bering Land Bridge. Stanford University Press; Palo Alto, California.Google Scholar
Repenning, C. A. 1976. Adaptive evolution of sea lions and walruses. Systematic Zoology 25:375390.Google Scholar
Repenning, C. A. 1983. Faunal exchanges between Siberia and North America. Schriftenreihe der Geologischen Wissenschaften zu Berlin 19–20:333346.Google Scholar
Repenning, C. A. 1985. Pleistocene mammalian faunas: climate and evolution. Acta Zoologica Fennica 170:173176.Google Scholar
Repenning, C. A., Ray, C. E., and Grigorescu, D.. 1979. Pinniped biogeography. Pp. 357369. In Gray, J. and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press; Corvallis.Google Scholar
Repenning, C. A., Brouwers, E. M., Carter, L. D., Marincovich, L. Jr., and Ager, T. A.. 1987. The Beringian ancestry of Phenacomys (Rodentia: Cricetidae) and the beginning of the modern Arctic Ocean borderland biota. United States Geological Survey Bulletin 1687:131.Google Scholar
Scarlato, O. A. 1981. Dvustvorchatye Molliuski Umerennych Shirot Zapadnoi Chasti Tichogo Okeana. “Nauka”; Leningrad.Google Scholar
Scarlato, O. A. (ed.) 1987. Mollyuski Belogo Morya. “Nauka”; Leningrad.Google Scholar
Scarlato, O. A., and Kafanov, A. I.. 1988. Contribution to the fauna of bivalve mollusks in the USSR far eastern seas. Zoologicheskii Zhurnal 67:937–742 [In Russian].Google Scholar
Schenck, H. G. 1936. Nuculid bivalves of the genus Acila . Geological Society of America Special Paper 4:1149.Google Scholar
Schiøtte, T. 1989. Marine Mollusca from Jørgen Brønlund Fjord, north Greenland, including the description of Diaphana redelsbyae n. sp. Medelelser om Grönland Biosciences 28:124 Google Scholar
Simberloff, D. S. 1986. Introduced insects: a biogeographic and systematic perspective. Pp. 326. In Mooney, H. A., and Drake, J. A. (eds.), Ecology of Biological Invaders of North America and Hawaii. Springer; New York.Google Scholar
Simpson, G. G. 1947. Holarctic mammalian faunas and continental relationships during the Cenozoic. Bulletin of the Geological Society of America 58:613687.Google Scholar
Soot-Ryen, T. 1932. Pelecypoda with a discussion of possible migrations of Arctic pelecypods in Tertiary times. Norwegian North Polar Expedition with the “Maud” 1918-1925, Scientific Results, 5(12):135.Google Scholar
Soot-Ryen, T. 1958. Pelecypods from East Greenland. Norsk Polarinstitut Skrifter 113:132.Google Scholar
Stanley, S. M. 1986a. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Stanley, S. M. 1986b. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.Google Scholar
Strauch, F. 1970. Die Thule-Landbriicke als Wanderweg und Faunenscheide zwischen Atlantik and Skandik im Tertiär. Geologische Rundschau 60:381417.Google Scholar
Strauch, F. 1972. Phylogenese, Adaptation und Migration einiger nordischer mariner Molluskengenera (Neptunea, Panomya, Cyrtodaria und Mya). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 531:1211.Google Scholar
Svetovidov, A. N. 1953. Similarities and differences in the distribution, ecology, and some other characteristics of cod and oceanic herring. Pp. 122133. In Ocherki po Obshchim Voprosam Ikhtiologii. Izdatel'stvo Akademii; Moskva.Google Scholar
Thorson, G. 1941. Marine Gastropoda Prosobranchiata. Zoology of Iceland 4:115.Google Scholar
Thorson, G. 1944. The Zoology of East Greenland. Marine Gastropoda Prosobranchiata. Medeleser om Grönland 121:1181.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Paleobiology 15:8394.Google Scholar
Vermeij, G. J. 1974. Marine faunal dominance and molluscan shell form. Evolution 28:656664.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Vermeij, G. J. 1987a. Evolution and Escalation: an Ecological History of Life. Princeton University Press; Princeton, New Jersey.Google Scholar
Vermeij, G. J. 1987b. The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction. Evolution 41:10461058.Google Scholar
Vermeij, G. J. 1989a. Invasion and extinction: the last three million years of North Sea pelecypod history. Conservation Biology 3:274281.Google Scholar
Vermeij, G. J. 1989b. Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene. Paleobiology 15:335356.CrossRefGoogle Scholar
Vermeij, G. J. 1991. Generic identity and relationships of the northeastern Pacific buccinid gastropod Searlesia dira (Reeve, 1846). Veliger 33:264271.Google Scholar
Vermeij, G. J. In press. Marine extinctions and their implications for conservation and biogeography. Proceedings, Fourth International Congress of Systematic and Evolutionary Biology; College Park, Maryland, July 1990.Google Scholar
Vermeij, G. J., Palmer, A. R., and Lindberg, D. R.. 1990. Range limits and dispersal of molluscs in the Aleutian Islands. Veliger 33:346354.Google Scholar
Wagner, C. D. 1974. Fossil and Recent sand dollar echinoids of Alaska. Journal of Paleontology 48:105123.Google Scholar
Waller, T. R. 1990. Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). Pp. 173. In Shumway, S. E. (ed.), Scallops: Biology, Ecology, and Aqua-culture. Elsevier; Amsterdam.Google Scholar
Waren, A. 1989a. New and little known Mollusca from Iceland. Sarsia 74:128.Google Scholar
Waren, A. 1989b. Molluscs from east and north of Svalbard collected by the Swedish Ymer-80 Expedition. Sarsia 74:127130.Google Scholar
Webb, S. D. 1985a. Main pathways of mammalian diversification in North America. Pp. 201217. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum; New York.Google Scholar
Webb, S. D. 1985b. Late Cenozoic mammal dispersal between the Americas. Pp. 357386. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum; New York.Google Scholar
Worley, E. K., and Franz, D. R.. 1983. A comparative study of selected skeletal structures in the sea stars Asterias forbesi (Desor), A. vulgaris Verrill, and A. rubens L., with a discussion of possible relationships. Proceedings of the Biological Society of Washington 96:524547.Google Scholar
Wright, D. H. 1983. Species-energy theory: an extension of species-area theory. Oikos 41:496506.CrossRefGoogle Scholar
Yamaguchi, T. 1977. Taxonomic studies on some fossil and Recent Japanese Balanoidea. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 107–108:135201.Google Scholar
Zinsmeister, W. J., and Emerson, W. K.. 1979. The role of passive dispersal in the distribution of hemipelagic invertebrates, with examples from the tropical Pacific Ocean. Veliger 22:3240.Google Scholar
Zullo, V. A. 1979. Marine fauna and flora of the northeastern United States. Arthropoda: Cirripedia. NOAA Technical Report, NMFS Circular 425:129.Google Scholar
Zullo, V. A., and Marincovich, L. Jr. 1990. Balanoid barnacles from the Miocene of the Alaska Peninsula, and their relevance to the extant boreal barnacle fauna. Journal of Paleontology 64:128135.Google Scholar