Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T20:11:00.637Z Has data issue: false hasContentIssue false

Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion”

Published online by Cambridge University Press:  08 April 2016

Jerzy Dzik*
Affiliation:
Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warsaw, Poland. E-mail: dzik@twarda.pan.pl

Abstract

All interpretable trace fossils from the Ediacarian–Cambrian transition strata of northern Siberia, Ukraine, and elsewhere represent shelters of infaunal animals feeding from the sediment surface. There is a gradation of forms ranging from (1) makers of horizontal galleries in soft sand with bilobed lower surface and proboscis extended to the surface, through (2) linear or zigzag series of short, widely U-shaped burrows in firm clay with bilobed or three-lobed lower surface, to (3) series of cylindrical chambers dug completely inside the sediment but opening to its surface. At the same time, protective skeleton originated in animals living above the sediment surface. Apparently, the diversification of predators in the earliest Cambrian forced other animals to invest energy either in digging or in a protective armor (“the Verdun Syndrome”). True mud-eaters appeared later, as documented by the late Tommotian horizontal spreite structures from central Siberia. Most, if not all, of those infaunal traces of activity were produced probably by relatives of priapulid worms. It appears that body cavities and segmentation in the Metazoa (diverse already in the Ediacarian) evolved independently of, and prior to, hydraulic burrowing.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrianov, A. B., and Malakhov, V. V. 1996. Priapulidy (Priapulida) stroyenie, razvitie, filogenia i sistema. KMK Scientific Press, Moscow.Google Scholar
Areń, B., and Lendzion, K. 1978. Charakterystyka stratygraficzno-litologiczna wendu i kambru dolnego. Prace Instytutu Geologicznego 90:750.Google Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences USA 95:606611.CrossRefGoogle ScholarPubMed
Bengtson, S., Morris, S. Conway, Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9:1364.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of early Cambrian evolution. Science 261:12931298.Google Scholar
Brasier, M. D., and McIlroy, D. 1998. Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals. Journal of the Geological Society, London 155:512.Google Scholar
Brasier, M. D., and Shields, G. 2000. Neoproterozoic chemostratigraphy and correlation of the Port Askaig glaciation, Dalradian Supergroup of Scotland. Journal of the Geological Society, London 157:909914.Google Scholar
Buatois, L. A., and Mángano, M. G. 1993. The ichnotaxonomic status of Plangtichnus and Treptichnus. Ichnos 2:217224.CrossRefGoogle Scholar
Clark, R. B. 1964. Dynamics in metazoan evolution: the origin of the coelom and segments. Clarendon, Oxford.Google Scholar
Clark, R. B. 1979. Radiation of the Metazoa. In House, M. R., ed. The origin of major invertebrate groups. Systematic Association Special Volume 12:55101. Academic Press, London.Google Scholar
Morris, S. Conway 1977. Fossil priapulid worms. Special Papers in Palaeontology 20:197.Google Scholar
Morris, S. Conway 1997. Molecular clocks: defusing the Cambrian “explosion”? Current Biology 7:R71R74.Google Scholar
Crimes, T. P., and Zhiwen, J. 1986. Trace fossils from the Precambrian-Cambrian boundary candidate at Meishucun, Jinning, Yunnan, China. Geological Magazine 123:641649.Google Scholar
Dewel, R. A., Dewel, W. C., and McKinney, F. K. 2001. Diversification of the Metazoa: Ediacarans, colonies, and the origin of eumetazoan complexity by nested modularity. Historical Biology 15:93118.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2000a. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences USA 99:1257212576.CrossRefGoogle Scholar
Droser, M. L., Jensen, S., Gehling, J. G., Myrow, P. M., and Narbonne, G. M. 2002b. Lowermost Cambrian ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian substrates. Palaios 17:315.Google Scholar
Dzik, J. 1991. Is fossil evidence consistent with traditional views of the early Metazoan phylogeny? Pp. 4756in Morris, S. Conway and Simonetta, A., eds. The early evolution of metazoa and significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar
Dzik, J. 1994. Evolution of ‘small shelly fossils’ assemblages of the early Paleozoic. Acta Palaeontologica Polonica 39:3,247313.Google Scholar
Dzik, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology 43:114126.Google Scholar
Dzik, J., Zhao, Y.-l., and Zhu, M.-y. 1997. Mode of life of the Middle Cambrian eldonioid lophophorate Rotadiscus. Palaeontology 40:385396.Google Scholar
Fedonkin, M. A. 1985. Paleoikhnologia vendskich Metazoa. Pp. 112117in Sokolov, B. S. and Ivanovsky, A. B., eds. Vendskaya Sistema. Istoriko-geologicheskoye i paleontologicheskoye obosnovanie. 1 Paleontologia. Nauka, Moscow.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:4057.Google Scholar
Gehling, J. G., Jensen, S., Droser, M. L., Myrow, P. M., and Narbonne, G. 2001. Burrowing below the basal GSSP, Newfoundland. Geological Magazine 138:213218.Google Scholar
Geyer, G., and Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic-Lower Cambrian) in Namibia and the Proterozoic-Cambrian boundary problem revisited. Beringeria Special Issue 2:175202.Google Scholar
Glaessner, M. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2:369393.Google Scholar
Gureev, Y. A. 1986. O perpektivach paleoikhnologicheskogo metoda v stratigrafii. Tektonika i Stratigrafia 27:4247.Google Scholar
Hagadorn, J. W., and Bottjer, D. J. 1999. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14:7385.Google Scholar
Hagadorn, J. W., Schellenberg, S. A., and Bottjer, D. J. 2000. Paleoecology of a large Early Cambrian bioturbator. Lethaia 33:42156.Google Scholar
Hofmann, H. J., and Patel, I. M. 1989. Trace fossils from the type ‘Etcheminian Series’ (Lower Cambrian Ratcliffe Brook Formation), Saint John area, New Brunswick, Canada. Geological Magazine 126:139157.Google Scholar
Hou, X.-G., and Sun, W.-G. 1988. Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan. Acta Palaeontologica Sinica 27:19.Google Scholar
Huang, D.-y., Vannier, J., Chen, J.-Y. 2004. Anatomy and lifestyles of Early Cambrian priapulid worms exemplified by Corynetis and Anningvermis from the Maotianshan Shale (SW China). Lethaia 37:2133.Google Scholar
International Commission on Zoological Nomenclature. 1999. International code of zoological nomenclature, 4th ed.Natural History Museum, London.Google Scholar
Jaeger, H., and Martinsson, A. 1980. The Early Cambrian trace Plagiogmus in its type area. Geologiska Föreningens i Stockholm Förhandlingar 102:117126.Google Scholar
Jensen, S. 1990. Predation by early Cambrian trilobites on infaunal worms—evidence from the Swedish Mickwitzia Sandstone. Lethaia 23:2942.Google Scholar
Jensen, S. 1997. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata 42:1110.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology 43:219228.Google Scholar
Jensen, S., and Grant, S. W. F. 1998. Trace fossils from the Dividalen Group, northern Sweden: implications for Early Cambrian biostratigraphy of Baltica. Norsk Geologisk Tidsskrift 78:305317.Google Scholar
Jensen, S., and Mens, K. 2001. Trace fossils Didymaulichnus cf. tirasensis and Monomorphichnus isp. from the Estonian Lower Cambrian, with a discussion on the early Cambrian ichnocoenoses of Baltica. Proceedings of the Estonian Academy of Sciences, Geology 50:7585.Google Scholar
Jensen, S., Gehling, J. G., and Droser, M. 1998. Ediacara-type fossils in Cambrian sediments. Nature 393:567569.Google Scholar
Jensen, S., Saylor, B. Z., Gehling, J. G., and Germs, G. J. B. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28:143146.Google Scholar
Jones, D., and Thompson, I. 1977. Echiura from the Pennsylvanian Essex Fauna of northern Illinois. Lethaia 10:317325.Google Scholar
Karlova, G. A., and Vodanjuk, S. A. 1985. Novyie dannyie o perekhodnych k kembriu otlozheniach basseina r. Khorbusuonki (olenekskoie podniatie). Pp. 313in Khomentovsky, V. V., Terleyev, A. A., and Bragin, S. S., eds. Stratigrafia pozdniego dokemebria i ranniego paleozoja Sibiri. Vend i rifej. Institut Geologii i Geofiziki SOAN SSSR, Novosibirsk.Google Scholar
Khomentovsky, V. V., and Karlova, G. A. 1993. Biostratigraphy of the Vendian-Cambrian beds and the lower Cambrian boundary in Siberia. Geological Magazine 130:2945.Google Scholar
Kirschvink, J. L., and Hagadorn, J. W. 2000. A grand unified theory of biomineralization. Pp. 139149in Baeurlein, E., ed. Biomineralization: from biology to biotechnology and medical application. Wiley-CCH, Weinheim.Google Scholar
Książkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica 36:1208.Google Scholar
Maples, C. G., and Archer, A. W. 1987. Redescription of early Pennsylvanian trace-fossil holotypes from the nonmarine Hindostan Whetstone beds of Indiana. Journal of Paleontology 61:890897.Google Scholar
McIlroy, D., and Heys, G. R. 1997. Palaeobiological significance of Plagiogmus arcuatus from the lower Cambrian of central Australia. Alcheringa 21:167178.Google Scholar
McIlroy, D., and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios 14:5872.Google Scholar
Missarzhevsky, V. V. 1989. Drevneyshije skeletnyie okamenelosti i stratigrafia pogranichnykh tolshch dokembria i kembria. Trudy Geologicheskogo Instituta AN SSSR 443:1237.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33:945980.Google Scholar
Orlowski, S., and Żylińska, A. 1996. Non-arthropod burrows from the Middle and Late Cambrian of the Holy Cross Mountains, Poland. Acta Palaeontologia Polonica 41:385409.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils from the Cincinnati area. Palaeontographica Americana 6:281444.Google Scholar
Pacześna, J. 1996. The Vendian and Cambrian ichnocoenoses from the Polish part of the East-European Platform. Prace Państwowego Instytutu Geologicznego 152:177.Google Scholar
Palij, W. M. 1974. Podvijny slidy (bilobity) u vidkladach baltijskoj serii Pridniestrovia. Dopovidi AN USSR, seria B, 1:499503.Google Scholar
Palij, W. M. 1976. Ostatki bezskeletnoj fauny i sledy ziznedeyatelnosti iz otlozhenii verkhnego dokembria i nizhnego kembria Podolii. Pp. 6377in Shulga, P. L., ed. Paleontologia i stratigrafia dokembria i nizhnego paleozoia jugo-zapada Vostochno-Evropejskoy Platformy. Naukova Dumka, Kiev.Google Scholar
Palij, W. M. 1983. Soft-bodied Metazoa and animal trace fossils in the Vendian and early Cambrian. Pp. 5693in Urbanek, A. and Rozanov, A.Y., eds. Upper Precambrian and Cambrian Palaeontology of the East European Platform. Wydawnictwa Geologiczne, Warsaw.Google Scholar
Portner, H. O. 2002. Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes. Comparative Biochemistry and Physiology A 133:303321.Google Scholar
Seilacher, A. 1955. Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). V. Spuren und Fazies im Unterkambrium. Abhandlungen der mathematisch-naturwissenschaftlichen Klasse der Akademie der Wissenschaften und der Literatur in Mainz 1955:372399.Google Scholar
Seilacher, A. 1995. Fossile Kunst. Albumblätter der Erdgeschichte. Goldschneck, Korb.Google Scholar
Seilacher, A. 1999. Biomate-related lifestyles in the Precambrian. Palaios 14:8693.Google Scholar
Seilacher, A., and Hemleben, C. 1966. Beiträge zur Sedimentation und Fossilführung de Hunsrückschiefers, Teil 14. Spurengfauna und Bildungstiefe der Hunsrückschiefer (Unterdevon). Notizblatt des Hessischen Landesamtes für Bodenforschung zu Wiesbaden 94:4053.Google Scholar
Signor, P. W., and McMenamin, M. A. S. 1988. The Early Cambrian worm tube Onuphionella from California and Nevada. Journal of Paleontology 62:233240.Google Scholar
Uchman, A., Bromley, R. G., and Leszczyński, S. 1998. Ichnogenus Treptichnus in Eocene flysch, Carpathians, Poland: taxonomy and preservation. Ichnos 5:269275.Google Scholar
Valentine, J. W. 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences 30:285306.Google Scholar
Valkov, A. K. 1987. Biostratigrafia nizhnego kembria vostoka Sibirskoi platformy. Yudomo-Olenekskij region. Nauka, Moscow.Google Scholar
Velikanov, V. A., ed. 1990. The Vendian of Podolia. Excursion guide for III International Symposium on Cambrian System and Vendian/Cambrian boundary. Institute of Geological Sciences, Kiev.Google Scholar
Velikanov, V. A., Aseeva, E. A., and Fedonkin, M. A. 1983. Vend Ukrainy. Naukova dumka, Kiev.Google Scholar
Vidal, G., Jensen, S., and Palacios, T. 1994. Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain. Geological Magazine 131:169179.Google Scholar
Vodanyuk, S. A. 1987. Problemnyie voprosy stratigrafii vendskich otlozheni basseina r. Khorbusuonki (olenekskoie podniatie). Pp. 317in Khomentovsky, V. V., ed. Pozdnij dokemebrij i rannij paleozoj Sibiri. Sibirskaya platforma i jejo juzhnoye skladchatoye obramlenie. Institut Geologii i Geofiziki SOAN SSSR, Novosibirsk.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Pre-Cambrian divergences among metazoan phyla. Science 274:568573.Google Scholar
Yochelson, E. L., and Fedonkin, M. A. 1993. Paleobiology of Climactichnites, an enigmatic Late Cambrian fossil. Smithsonian Contributions to Paleobiology 74:174.Google Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the southern Cordillera of Canada. Canadian Journal of Earth Sciences 9:117.Google Scholar
Zhuravlev, A. Y. 1995. Preliminary suggestions on the global Early Cambrian zonation. Beringeria Special Issue 2:147160.Google Scholar