Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T02:05:16.009Z Has data issue: false hasContentIssue false

Biomechanics of the jaw apparatus of the gigantic Eocene bird Diatryma: implications for diet and mode of life

Published online by Cambridge University Press:  08 February 2016

Lawrence M. Witmer
Affiliation:
Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205
Kenneth D. Rose
Affiliation:
Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205

Abstract

Discovery of several new specimens of the gigantic Eocene ground bird Diatryma gigantea from the Willwood Formation of northwestern Wyoming, has prompted an analysis of its feeding apparatus and an assessment of the mode of life of this unusual bird. Diatryma exhibits many of the features predicted by biomechanical models to occur in animals delivering large dorsoventral bite forces. Similarly, the mandible of Diatryma, which was modeled as a curved beam, appears well equipped to withstand such forces, especially if they were applied asymmetrically. Interpretation of these size-independent biomechanical properties in light of the large absolute skull size of Diatryma suggests a formidable feeding apparatus. The absence of modern analogues complicates the determination of just how this unique skull morphology correlates with diet. Suggestions that Diatryma was an herbivore seem improbable in that they require the postulation of excessively high safety factors in the construction of the skull. The traditional hypothesis of Diatryma as a carnivorous bird accords as well or better with the data at hand. Carnivory raises the probability of “accidental” encounter with bones, thus explaining the high safety factors. In fact, the skull and mandible of Diatryma are so massive that bone crushing may have been an important behavior. Diatryma could have been a scavenger. However, limb allometry and phylogenetic interpretation of limb proportions call into question the picture of Diatryma as a slow, plodding graviportal animal, suggesting that active predation was within its behavioral repertoire.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. McN. 1981. Factors of safety in the structure of animals. Science Progress, Oxford 67:109130.Google ScholarPubMed
Alexander, R. McN. 1983a. Allometry of the leg bones of moas (Dinornithes) and other birds. Journal of Zoology, London 200:215231.CrossRefGoogle Scholar
Alexander, R. McN. 1983b. On the massive legs of a Moa (Pachyornis elephantopus, Dinornithes). Journal of Zoology, London 201:363376.CrossRefGoogle Scholar
Alexander, R. McN. 1985. The legs of ostriches (Struthio) and moas (Pachyornis). Pp. 5968. In Zweers, G. A., and Dullemeijer, P. (eds.), Architecture in Living Structure. Martinus Nijhoff/Dr. W. Junk Publishers; Boston.CrossRefGoogle Scholar
Alexander, R. McN. 1989. Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press; New York.Google Scholar
Ameghino, F. 1894. Sur les oiseaux fossiles de Patagonie et la faune mammalogique des couches à Pyrotherium. Boletín del Instituto Geográfico Argentino 15:501660.Google Scholar
Anderson, S. F., Hall-Martin, A., and Russell, D. A. 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, London (A) 207:5361.CrossRefGoogle Scholar
Andors, A. V. 1988. Giant groundbirds of North America (Aves, Diatrymidae). Unpublished Ph.D. dissertation, Columbia University, New York. #8815650, University Microfilms, Ann Arbor, Michigan.Google Scholar
Andors, A. V. 1989. Reinterpretation of Diatryma (Aves: Diatrymidae) as a probable herbivore with affinities to the anseriforms. Journal of Vertebrate Paleontology 9(Supplement to 3):11A.Google Scholar
Andrews, C. W. 1899. On the extinct birds of Patagonia. I. The skull and skeleton of Phororhacos inflatus Ameghino. Transactions of the Zoological Society, London 15:5586.CrossRefGoogle Scholar
Andrews, C. W. 1917. A gigantic Eocene bird. Geological Magazine 4:469471.CrossRefGoogle Scholar
Archey, G. 1941. The moa. A study of the Dinornithiformes. Bulletin of the Auckland Institute and Museum 1:1145.Google Scholar
Bakker, R. T. 1983. The deer flees, the wolf pursues: Incongruencies in predator-prey coevolution. Pp. 350382. In Futuyma, D. J., and Slatkin, M. (eds.), Coevolution. Sinauer Associates; Sunderland; Massachusetts.Google Scholar
Baumel, J. J., King, A. S., Lucas, A. M., Breazile, J. E., and Evans, H. E. 1979. Nomina anatomica avium. An annotated anatomical dictionary of birds. Academic Press; New York.Google Scholar
Beecher, R. M. 1977. Function and fusion at the mandibular symphysis. American Journal of Physical Anthropology 47:325336.CrossRefGoogle ScholarPubMed
Beecher, R. M. 1979. Functional significance of the mandibular symphysis. Journal of Morphology 159:117130.CrossRefGoogle ScholarPubMed
Beecher, W. J. 1962. The bio-mechanics of the bird skull. Bulletin of the Chicago Academy of Science 11:1033.Google Scholar
Biewener, A. A. 1982. Bone strength in small mammals and bipedal birds: Do safety factors change with body size? Journal of Experimental Biology 98:289301.CrossRefGoogle ScholarPubMed
Biknevicius, A. R. 1990. Biomechanical design of the mandibular corpus in carnivores. Unpublished Ph.D. dissertation, The Johns Hopkins University. Baltimore, Maryland.Google Scholar
Bock, W. J. 1963. The cranial evidence for ratite affinities. Pp. 3954. In Sibley, C. G. (ed.), Proceedings of the XIIIth International Ornithological Congress. American Ornithologists' Union; Lawrence, Kansas.Google Scholar
Bock, W. J. 1964. Kinetics of the avian skull. Journal of Morphology 114:142.CrossRefGoogle Scholar
Bock, W. J. 1966. An approach to the functional analysis of bill shape. Auk 83:1051.CrossRefGoogle Scholar
Bock, W. J. 1974. The avian skeletomuscular system. Pp. 119257. In Farner, D. S., King, J. R., and Parkes, K. C. (eds.), Avian Biology, Volume IV. Academic Press; New York.Google Scholar
Bock, W. J., and Kummer, B. 1968. The avian mandible as a structural girder. Journal of Biomechanics 1:8996.CrossRefGoogle ScholarPubMed
Bramble, D. M. 1978. Origin of the mammalian feeding complex: models and mechanisms. Paleobiology 4:271301.CrossRefGoogle Scholar
Brodkorb, P. 1967. Catalogue of fossil birds: Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes). Bulletin of the Florida State Museum 11:99220.Google Scholar
Bühler, P. 1981. Functional anatomy of the avian jaw apparatus. Pp. 439468. In King, A. S., and McLelland, J. (eds.), Form and Function in Birds, Volume 2. Academic Press; New York.Google Scholar
Bühler, P., Martin, L. D., and Witmer, L. M. 1988. Cranial kinesis in the Late Cretaceous birds Hesperornis and Parahesperornis. Auk 105:111112.CrossRefGoogle Scholar
Burckhardt, R. 1893. Über Aepyornis. Palaeontologische Abhandlungen 2:127145.Google Scholar
Burton, P.J.K. 1977. Lower jaw action during prey capture by pelicans. Auk 94:785786.CrossRefGoogle Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman; New York.Google Scholar
Cracraft, J. 1976a. Covariation in the postcranial skeleton of moas (Aves, Dinornithidae): A factor analytic study. Paleobiology 2:166173.CrossRefGoogle Scholar
Cracraft, J. 1976b. The hindlimb elements of the moas (Aves, Dinornithidae): A multivariate assessment of size and shape. Journal of Morphology 150:495526.CrossRefGoogle Scholar
Currey, J. D. 1984. The mechanical adaptations of bones. Princeton University Press; Princeton, New Jersey.CrossRefGoogle Scholar
Davies, S.J.J.F. 1976. The natural history of the emu in comparison with that of other ratites. Pp. 109120. In Frith, H. J., and Calaby, J. H. (eds.), Proceedings of the 16th International Ornithological Congress. Australian Academy of Science; Canberra City.Google Scholar
de Beer, G. R. 1954. Archaeopteryx lithographica: A study based upon the British Museum specimen. British Museum (Natural History); London.Google Scholar
Dessem, D. 1989. Interactions between jaw-muscle recruitment and jaw-joint forces in Canis familiaris. Journal of Anatomy 164:101121.Google ScholarPubMed
Druzinsky, R. E., and Greaves, W. S. 1979. A model to explain the posterior limit of the bite point in reptiles. Journal of Morphology 160:165168.CrossRefGoogle Scholar
Feduccia, A. 1980. The Age of Birds. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Fischer, K.-H. 1978. Neue Reste des Riesenlaufvogels Diatryma aus dem Eozän des Geiseltales bei Halle (DDR). Mitteilungen aus dem Zoologischen Museum in Berlin 54 Supplement:133144.Google Scholar
Fischer, W. 1968. Subfamily: Old World vultures. Pp. 391406. In Grzimek, B. (ed.), Grzimek's Animal Life Encyclopedia, Volume 7: Birds I. Van Nostrand Reinhold; New York.Google Scholar
Gans, C. 1986. Functional morphology of predator-prey relationships. Pp. 623. In Feder, M. E., and Lauder, G. V. (eds.), Predator-Prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates. University of Chicago Press; Chicago.Google Scholar
Gans, C. 1988. Muscle insertions do not incur mechanical advantage. Acta Zoologica Cracoviensia 31:615624.Google Scholar
Gans, C., and Bock, W. J. 1965. The functional significance of muscle architecture—a theoretical analysis. Ergebnisse der Anatomie und Entwicklungsgeschichte 38:115142.Google ScholarPubMed
Gans, C., and de Vree, F. 1987. Functional bases of fiber length and angulation in muscle. Journal of Morphology 192:6385.CrossRefGoogle ScholarPubMed
Goodman, D. C., and Fisher, H. I. 1962. Functional Anatomy of the Feeding Apparatus in Waterfowl (Aves: Anatidae). Southern Illinois University Press; Carbondale, Illinois.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Review 41:587640.CrossRefGoogle ScholarPubMed
Gould, S. J. 1989a. Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton; New York.Google Scholar
Gould, S. J. 1989b. A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43:516539.Google ScholarPubMed
Grajal, A., Strahl, S. D., Parra, R., Dominguez, M. G., and Neher, A. 1989. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245:12361238.CrossRefGoogle ScholarPubMed
Gray, J. 1968. Animal Locomotion. Norton; New York.Google Scholar
Greaves, W. S. 1988a. A functional consequence of an ossified mandibular symphysis. American Journal of Physical Anthropology 77:5356.CrossRefGoogle ScholarPubMed
Greaves, W. S. 1988b. The maximum average bite force for a given jaw length. Journal of Zoology 214:295306.CrossRefGoogle Scholar
Greenway, J. C. Jr. 1958. Extinct and vanishing birds of the world. American Committee for International Wild Life Protection; New York.Google Scholar
Hanley, J. H. 1976. Paleosynecology of nonmarine Mollusca from the Green River and Wasatch Formations (Eocene), southwestern Wyoming and northwestern Colorado. In Scott, R. W., and West, R. R. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchinson, and Ross; Strasburg.Google Scholar
Hoffman, R. 1988. The contribution of raptorial birds to patterning in small mammal assemblages. Paleobiology 14:8190.CrossRefGoogle Scholar
Houde, P. W. 1988. Paleognathous birds from the early Tertiary of the Northern Hemisphere. Nuttall Ornithological Club; Cambridge, Massachusetts.Google Scholar
Hylander, W. L. 1984. Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. American Journal of Physical Anthropology 64:146.CrossRefGoogle ScholarPubMed
Hylander, W. L. 1985. Mandibular function and biomechanical stress and scaling. American Zoologist 25:315330.CrossRefGoogle Scholar
Lauder, G. V. 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology 7:430442.CrossRefGoogle Scholar
Lebedinsky, N. G. 1921. Zur Syndesmologie der Vögel. Anatomischer Anzeiger 54:815.Google Scholar
Maloiy, G.M.O., Alexander, R. McN., Njau, R., and Jayes, A. S. 1979. Allometry of the legs of running birds. Journal of Zoology, London 187:161167.CrossRefGoogle Scholar
Marsh, O. C. 1880. Odontornithes: A monograph on the extinct toothed birds of North America. Memoirs of the Peabody Museum of Natural History 1:1201.Google Scholar
Marshall, L. G. 1978. The terror bird. Field Museum of Natural History Bulletin 49:615.Google Scholar
Martin, L. D. 1983. The origin and early radiation of birds. Pp. 291338. In Brush, A. H., and Clark, G. A. (eds.), Perspectives in Ornithology. Cambridge University Press; Cambridge.CrossRefGoogle Scholar
Martin, L. D. 1989. Fossil history of the terrestrial Carnivora. Pp. 536568. In Gittleman, J. L. (ed.), Carnivore Behavior, Ecology, and Evolution. Cornell University Press; Ithaca, New York.CrossRefGoogle Scholar
Matthew, W. D., and Granger, W. 1917. The skeleton of Diatryma, a gigantic bird from the Lower Eocene of Wyoming. Bulletin of the American Museum of Natural History 37:307326.Google Scholar
Miller, G. J., and Purkey, W. W. Jr. 1980. The geometric properties of paired human tibiae. Journal of Biomechanics 13:18.CrossRefGoogle ScholarPubMed
Monnier, L. 1913. Les Aepyornis. Paléontologie de Madagascar VII. Annales de Paléontologie 8:125172.Google Scholar
Morse, D. H. 1975. Ecological aspects of adaptive radiation in birds. Biological Review 50:167214.CrossRefGoogle Scholar
Morton, E. S. 1978. Avian arboreal folivores: Why not? Pp. 123130. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores. Smithsonian Institution Press; Washington.Google Scholar
Mountfort, G. 1957. The Hawfinch. Collins Clear-Type Press; London.Google Scholar
Oliver, W.R.B. 1949. The moas of New Zealand and Australia. Dominion Museum Bulletin 15:1206.Google Scholar
Olson, S. L. 1985. The fossil record of birds. Pp. 79238. In Farner, D. S., King, J. R., and Parkes, K. C. (eds.), Avian Biology, Volume VIII. Academic Press; New York.CrossRefGoogle Scholar
Peters, D. S. 1987. Ein “Phorusrhacide” aus dem Mittel-Eozän von Messel (Aves: Gruiformes: Cariamae). Documents des Laboratoires de Géologie, Lyon 99:7187.Google Scholar
Piziali, R. L., Hight, T. K., and Nagel, D. A. 1976. An extended structural analysis of long bones—application to the human tibia. Journal of Biomechanics 9:695701.CrossRefGoogle Scholar
Radinsky, L. B. 1987. The Evolution of Vertebrate Design. University of Chicago Press; Chicago.CrossRefGoogle Scholar
Raup, D. M. 1972. Approaches to morphologic analysis. Pp. 2844. In Schopf, T.J.M. (ed.), Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Reif, W.-E., Thomas, R. D. K., and Fischer, M. S. 1985. Constructional morphology: the analysis of constraints in evolution. Dedicated to A. Seilacher in honor of his 60th birthday. Acta Biotheoretica 34:233248.CrossRefGoogle Scholar
Rose, K. D. 1990. Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. Pp. 107133. In Bown, T. M., and Rose, K. D. (eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America. Special Paper 243. Geological Society of America; Boulder, Colorado.Google Scholar
Scapino, R. 1981. Morphological investigations into functions of the jaw symphysis in carnivorans. Journal of Morphology 167:339375.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size so Important? Cambridge University Press; New York.CrossRefGoogle Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.CrossRefGoogle Scholar
Shigley, J. E. 1976. Applied Mechanics of Materials. McGraw-Hill, New York.Google Scholar
Simonetta, A. M. 1960. On the mechanical implications of the avian skull and their bearing on the evolution and classification of birds. Quarterly Review of Biology 35:206220.CrossRefGoogle Scholar
Sims, R. W. 1955. The morphology of the head of the hawfinch (Coccothraustes coccothraustes), with special reference to the myology of the jaw. Bulletin of the British Museum (Natural History), Zoology 2:371393.CrossRefGoogle Scholar
Sinclair, W. J. 1928. Omorhamphus, a new flightless bird from the lower Eocene of Wyoming. Proceedings of the American Philosophical Society 67:5165.Google Scholar
Steadman, D. W. 1987. Diatrymiformes. Pp. 188189. In McGraw-Hill Encyclopedia of Science and Technology. McGraw-Hill; New York.Google Scholar
Tonni, E. P. 1980. The present state of knowledge of the Cenozoic birds of Argentina. Contributions in Science, Natural History Museum of Los Angeles County 330:105114.Google Scholar
Troxell, E. L. 1931. Diatryma, a colossal heron. American Journal of Science (Series 5) 22:1834.CrossRefGoogle Scholar
Wainwright, S. A. 1988. Form and function in organisms. American Zoologist 28:671680.CrossRefGoogle Scholar
Watson, G. E. 1976 … . And birds took wing. Pp. 98107. In Fishbein, S. L. (ed.), Our Continent: A Natural History of North America. National Geographical Society; Washington.Google Scholar
Welty, J. C., and Baptista, L. 1988. The Life of Birds. Fourth edition. Saunders College Publishing; New York.Google Scholar
Wetmore, A. 1967. Re-creating Madagascar's giant extinct bird. National Geographic Magazine 132:488493.Google Scholar
Williams, G. R. 1960. The takahe (Notornis mantelli Owen, 1948): a general survey. Transactions of the Royal Society of New Zealand 88:235258.Google Scholar
Wiman, C. 1935. Über Aepyornithes. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV 9:157.Google Scholar
Wing, S. L. 1980. Fossil floras and plant-bearing beds of the central Bighorn Basin. University of Michigan Papers on Paleontology 24:119125.Google Scholar
Ziswiler, V. 1965. Zur Kenntnis des Samenöffnens und der Struktur des hörnernen Gaumens bei körnerfressenden Oscines. Journal für Ornithologie 106:148.CrossRefGoogle Scholar
Zusi, R. L. 1967. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proceedings of the United States National Museum 123:128.CrossRefGoogle Scholar
Zusi, R. L. 1984. A functional and evolutionary analysis of rhynchokinesis in birds. Smithsonian Contributions to Zoology 395:140.Google Scholar