Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T15:29:16.759Z Has data issue: false hasContentIssue false

Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum

Published online by Cambridge University Press:  22 August 2013

Leah J. Schneider
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. E-mail: schneider@iodp.tamu.edu
Timothy J. Bralower
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. E-mail: schneider@iodp.tamu.edu
Lee R. Kump
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. E-mail: schneider@iodp.tamu.edu
Mark E. Patzkowsky
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. E-mail: schneider@iodp.tamu.edu

Abstract

The Paleocene-Eocene Thermal Maximum (PETM; ca. 55.8 Ma) is thought to coincide with a profound but entirely transient change among nannoplankton communities throughout the ocean. Here we explore the ecology of nannoplankton during the PETM by using multivariate analyses of a global data set that is based upon the distribution of taxa in time and space. We use these results, coupled with stable isotope data and geochemical modeling, to reinterpret the ecology of key genera. The results of the multivariate analyses suggest that the community was perturbed significantly in coastal and high-latitudes sites compared to the open ocean, and the relative influence of temperature and nutrient availability on the assemblage varies regionally. The open ocean became more stratified and less productive during the PETM and the oligotrophic assemblage responded primarily to changes in nutrient availability. Alternatively, assemblages at the equator and in the Southern Ocean responded to temperature more than to nutrient reduction. In addition, the assemblage change at the PETM was not merely transient—there is evidence of adaptation and a long-term change in the nannoplankton community that persists after the PETM and results in the disappearance of a high-latitude assemblage. The long-term effect on communities caused by transient warming during the PETM has implications for modern-day climate change, suggesting similar permanent changes to nannoplankton community structure as the oceans warm.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agnini, C., Muttoni, G., Kent, D. V., and Rio, D. 2006. Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: the calcareous nannofossil response to climate variability. Earth and Planetary Science Letters 241:815830.CrossRefGoogle Scholar
Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., and Giusberti, L. 2007a. Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps. Marine Micropaleontology 63:1938.CrossRefGoogle Scholar
Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Röhl, U., and Westerhold, T. 2007b. High-resolution nannofossil biochronology of middle Paleocene to early Eocene at ODP Site 1262: implications for calcareous nannoplankton evolution. Marine Micropaleontology 64:215248.CrossRefGoogle Scholar
Aubry, M. P. 1992. Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. Pp. 273309inProthero, D. R. and Berggren, W. A., eds. Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, N.J.Google Scholar
Aubry, M. P. 1998. Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration. Pp. 158203inAubry, M. P., Lucas, S., and Berggren, W. A., eds. Late Paleocene-Early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York.Google Scholar
Bains, S., Norris, R. D., Corfield, R. M., and Faul, K. L. 2000. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171174.CrossRefGoogle ScholarPubMed
Beardall, J., Stojkovic, S., and Larsen, S. 2009. Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecology and Diversity 2:191205.CrossRefGoogle Scholar
Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelund, M., Rost, B., Rickaby, R. E. M., and de Vargas, C. 2011. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476:8083.CrossRefGoogle ScholarPubMed
Bown, P. R. 2005. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33:653656.CrossRefGoogle Scholar
Bown, P., and Pearson, P. 2009. Calcareous plankton evolution and Paleocene/Eocene thermal maximum event: new evidence from Tanzania. Marine Micropaleontology 71:6070.CrossRefGoogle Scholar
Bralower, T. J. 2002. Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography 17:PA000662.Google Scholar
Bralower, T. J., Premoli Silva, I., Malone, M. J., et al. 2002. Proceedings of the Ocean Drilling Program, Initial Reports 198.Google Scholar
Bralower, T. J., Kelly, D. C., and Thomas, D. J. 2004. Comment on “Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea” by Stoll, Heather M. and Bains, Santo. Paleoceanography 19 :PA1014.CrossRefGoogle Scholar
Bukry, D. 1973. Low-latitude coccolith biostratigraphic zonation. Initial Reports of the Deep Sea Drilling Project 15:685703.Google Scholar
Cermeño, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., and Falkowski, P. G. 2008. The role of nutricline depth in regulating the ocean carbon cycle. Proceedings of the National Academy of Sciences USA 105:20,34420,349.CrossRefGoogle ScholarPubMed
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J. E. A., Cui, Y., Kump, L., and Croudace, I. W. 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems 12.CrossRefGoogle Scholar
Clyde, W. C., and Gingerich, P. D. 1998, Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:10111014.2.3.CO;2>CrossRefGoogle Scholar
Colosimo, A. B., Bralower, T. J., and Zachos, J. C. 2006. Evidence for lysocline shoaling at the Paleocene/Eocene Thermal Maximum on Shatsky Rise, Northwest Pacific. Proceedings of the Ocean Drilling Program, Scientific Results 198.CrossRefGoogle Scholar
Cramer, B., Miller, K. G., Aubry, M. P., Olsson, R. K., Wright, J. D., Kent, D. V., and Browning, J. V. 1999. The Bass River section: an exceptional record of the LPTM event in a neritic setting. Bulletin de la Société Géologique de France 170:883897.Google Scholar
Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C. K., Diefendorf, A. F., Freeman, K. H., Urban, N. M., and Harding, I. C. 2011. Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. Nature Geoscience 4:481485.CrossRefGoogle Scholar
Dickens, G. R., Fewless, T., Thomas, E., and Bralower, T. J. 2003. Excess barite accumulation during the Paleocene-Eocene Thermal Maximum: Massive input of dissolved barium from seafloor gas hydrate reservoirs. InWing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper 369:1123.Google Scholar
Edwards, A. R. 1968. The calcareous nannoplankton for Tertiary New Zealand climates. Tuatara 16:2631.Google Scholar
Edwards, N. R., and Marsh, R. 2005. Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Climate Dynamics 24:415433.CrossRefGoogle Scholar
Erba, E., Castradori, D., Guasit, G., and Ripepe, M. 1992. Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeography, Palaeoclimatology, Palaeoecology 93:4769.CrossRefGoogle Scholar
Farley, K. A., and Eltgroth, S. F. 2003. An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial 3H. Earth and Planetary Science Letters 208:135148.CrossRefGoogle Scholar
Firth, J. V., and Wise, S. W. Jr. 1992. A preliminary study of the evolution of Chiasmolithus in the middle Eocene to Oligocene of Sites 647 and 748, ODP Leg 120. Proceedings of the Ocean Drilling Program, Scientific Results 120:493508.Google Scholar
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A. 2006a. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Science 314:17701773.CrossRefGoogle ScholarPubMed
Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., and Bybell, L. M. 2006b. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients. Geology 34:233236.CrossRefGoogle Scholar
Gibbs, S. J., Stoll, H. M., Bown, P. R., and Bralower, T. J. 2010. Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters 295:583592.CrossRefGoogle Scholar
Gibson, T. G., Bybell, L. M., and Mason, D. B. 2000. Stratigraphic and climatic implications of clay mineral changes around the P/E boundary of the northeastern U.S. margin. Sedimentary Geology 134:6592.CrossRefGoogle Scholar
Gingerich, P. D. 2010. Mammalian faunal succession through the Paleocene-Eocene Thermal Maximum (PETM) in western North America. InWang, Y., ed. International symposium on terrestrial Paleogene biota and stratigraphy of eastern Asia in memory of Prof. Minchen Chow, Beijing. Vertebrata PalAsiatica 48:308327.Google Scholar
Gingerich, P. D., Rose, K. D., and Krause, D. W. 1980. Early Cenozoic mammalian faunas of the Clark's Fork Basin-Polecat Bench area, northwestern Wyoming. University of Michigan Museum of Paleontology Papers on Paleontology 24:5168.Google Scholar
Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., and Oddone, M. 2007. Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps. Geological Society of America Bulletin 119:391412.CrossRefGoogle Scholar
Hallock, P. 1987. Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457471.CrossRefGoogle Scholar
Haq, B. U., and Lohmann, G. P. 1976. Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean. Marine Micropaleontology 1:119194.CrossRefGoogle Scholar
Haq, B. U., Premoli-Silva, I., and Lohmann, G. P. 1977. Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the Early Cenozoic Atlantic Ocean. Journal of Geophysical Research 82:38613876.CrossRefGoogle Scholar
Hill, M. O., and Gauch, H. G. Jr. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:4758.CrossRefGoogle Scholar
Hilting, A. K., Kump, L. R., and Bralower, T. J. 2008. Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump. Paleoceanography 23:PA3222.CrossRefGoogle Scholar
Hooker, J. J. 1996. Mammalian biostratigraphy across the Paleocene-Eocene boundary in the Paris, London and Belgian basins. InKnox, R. O., Corfield, R. M., and Dunay, R. E., eds. Correlation of the early Paleogene in northwest Europe. Geological Society of London Special Publication 10:205218.CrossRefGoogle Scholar
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Dassow, P., Rehm, E., Ambrust, E. V., and Boessenkool, K. P. 2008. Phytoplankton calcification in a high-CO2 world. Science 320:336340.CrossRefGoogle Scholar
Jiang, S., and Wise, S. W. Jr. 2006. Surface-water chemistry and fertility variations in the tropical Atlantic across the Paleocene/Eocene Thermal Maximum as evidenced by calcareous nannoplankton from ODP Leg 207, Hole 1259B. Revue de micropaleontology 49:227244.CrossRefGoogle Scholar
Jiang, S., and Wise, S. W. Jr. 2007. Abrupt turnover in calcareous-nannoplankton assemblages across the Paleocene/Eocene Thermal Maximum: implications for surface-water oligotrophy over the Kerguelen Plateau, Southern Indian Ocean. Pp. 5inCooper, A. K. and Raymond, C. R., et al. eds. A keystone in a changing world: online proceedings of the 10th International Symposium on Antarctic Earth Sciences. USGS Open-File Report 2007–1047, Short Research Paper 024.Google Scholar
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., and Bralower, T. J. 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: implications for global carbon and hydrological cycling. Paleoceanography 23:PA2217.CrossRefGoogle Scholar
Kahn, A., and Aubry, M. P. 2004. Provincialism associated with the Paleocene/Eocene thermal maximum: temporal constraint. Marine Micropaleontology 52:117131.CrossRefGoogle Scholar
Kalb, A. L., and Bralower, T. J. 2012. Nannoplankton origination events and environmental changes in the late Paleocene and early Eocene. Marine Micropaleontology 92–93:115.CrossRefGoogle Scholar
Kelly, D. C., Bralower, T. J., Zachos, J. C., Premoli Silva, I., and Thomas, E. 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423426.2.3.CO;2>CrossRefGoogle Scholar
Kelly, D. C., Zachos, J. C., Bralower, T. J., and Schellenberg, S. A. 2005. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum. Paleoceanography 20:PA4023.CrossRefGoogle Scholar
Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C., and Röhl, U. 2010. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: implications for carbon cycling during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 293:3040.CrossRefGoogle Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225229.CrossRefGoogle Scholar
Koch, P. L., Zachos, J. C., and Dettman, D. L. 1995. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:6189.CrossRefGoogle Scholar
Lohbeck, K. T., Riebesell, U., and Reusch, T. B. 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience 5:346351.CrossRefGoogle Scholar
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:10831087.CrossRefGoogle ScholarPubMed
Maas, M. C., Anthony, M. R. L., Gingerich, P. D., Gunnell, G. F., and Krause, D. W. 1995. Mammalian generic diversity and turnover in the late Paleocene and early Eocene of the Bighorn and Crazy Mountains Basins Wyoming and Montana (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:181207.CrossRefGoogle Scholar
McCune, B., and Grace, J. B. 2002. Analysis of ecology communities. MjM Software Design, Gleneden Beach, Ore.Google Scholar
Monechi, S., Angori, E., and von Salis, K. 2000. Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain). Bulletin de la Société Géologique de France 171:477489.CrossRefGoogle Scholar
Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., and Schofield, O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:14701473.CrossRefGoogle ScholarPubMed
Mutterlose, J., Linnert, C., and Norris, R. 2007. Calcareous nannofossil from the Paleocene-Eocene Thermal Maximum of the equatorial Atlantic (ODP Site 1260B): evidence for tropical warming. Marine Micropaleontology 65:1331.CrossRefGoogle Scholar
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. -K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. -F., Yamanaka, Y., and Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681686.CrossRefGoogle ScholarPubMed
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damste, J. S., Dickens, G. R., and the Expedition 302 Scientists. 2006. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442:671674.CrossRefGoogle ScholarPubMed
Peet, R. K., Knox, R. G., Case, S., and Allen, R. B. 1988. Putting things in order: the advantages of detrended correspondence analysis. American Naturalist 131:924934.CrossRefGoogle Scholar
Persico, D., and Villa, G. 2004. Eocene-Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications. Marine Micropaleontology 52:153179.CrossRefGoogle Scholar
Raffi, I., and De Bernardi, B. 2008. Response of calcareous nannofossils to the Paleocene-Eocene Thermal Maximum: observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge-SW Atlantic). Marine Micropaleontology 69:119138.CrossRefGoogle Scholar
Raffi, I., Backman, J., and Pälike, H. 2005. Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 226:93126.CrossRefGoogle Scholar
Raffi, I., Backman, J., Zachos, J. C., and Sluijs, A. 2009. The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Marine Micropaleontology 70:201212.CrossRefGoogle Scholar
Ridgwell, A., and Schmidt, D. N. 2010. Past constraints on the vulnerability of marine calcifers to massive carbon dioxide release. Nature Geosciences 3:196200.CrossRefGoogle Scholar
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A. 2007. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4:87104.CrossRefGoogle Scholar
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364367.CrossRefGoogle ScholarPubMed
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C. 2007. On the duration of the Paleocene-Eocene thermal maximum. Geochemistry, Geophysics, Geosystems 8:113.CrossRefGoogle Scholar
Roth, P. H., and Bowdler, J. L. 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic Ocean. InWarme, J. E.et al., eds. The Deep Sea Drilling Project: a decade of progress. Society of Economic Paleontologists and Mineralogists Special Publication 32:517546.Google Scholar
Roth, P. H., and Krumbach, K. R. 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: implications for Paleoceanography. Marine Micropaleontology 10:235266.CrossRefGoogle Scholar
Scarponi, D., and Kowalewski, M. 2004. Stratigraphic paleoecology: bathymetric signatures and sequence overprint of mollusk associations from upper Quaternary sequences of the Po Plain, Italy. Geology 32:989992.CrossRefGoogle Scholar
Schneider, L. J., Bralower, T. J., and Kump, L. R. 2011. Response of nannoplankton to early Eocene ocean destratification. Palaeogeography, Palaeoclimatology, Palaeoecology 310:152162.CrossRefGoogle Scholar
Self-Trail, J. M., Powers, D. S., Watkins, D. K., and Wandless, G. A. 2012. Calcareous nannofossil assemblage changes across the Paleocene-Eocene Thermal Maximum: evidence from a shelf setting. Marine Micropaleontology 92–93:6180.CrossRefGoogle Scholar
Sexton, P. F., Wilson, P. A., and Norris, R. D. 2006. Testing the Cenozoic multisite composite δ18O and δ13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography 21:PA2019.CrossRefGoogle Scholar
Sigman, D. M., and Haug, G. H. 2003. The biological pump in the past. Pp. 491528inElderfield, H., ed. Treatise on geochemistry, Vol. 6. The oceans and marine geochemistry. Elsevier, Amsterdam.CrossRefGoogle Scholar
Sluijs, A., and Brinkhuis, H. 2009. A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences 6:17551781.CrossRefGoogle Scholar
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichert, G., Sinninghe Damste, J. S., Crouch, E. M., and Dickens, G. R. 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450:12181221.CrossRefGoogle ScholarPubMed
Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G. J., and Brinkhuis, H. 2011. Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum. Climate of the Past 7:4761.CrossRefGoogle Scholar
Stoll, H. M., and Bains, S. 2003. Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea. Paleoceanography 18:PA000875.CrossRefGoogle Scholar
Stoll, H. M., Shimizu, N., Archer, D., and Ziveri, P. 2007. Coccolithophore productivity response to greenhouse event of the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters 258:192206.CrossRefGoogle Scholar
Thomas, D. J., Bralower, T. J., and Zachos, J. C. 1999. New evidence for subtropical warming during the late Paleocene thermal maximum: stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography 14:561570.CrossRefGoogle Scholar
Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E., and Bohaty, S. 2002. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30:10671070.2.0.CO;2>CrossRefGoogle Scholar
Thomas, E. 1990. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proceedings of the Ocean Drilling Program, Scientific Results 113:571594.Google Scholar
Thomas, E., and Shackleton, N. J. 1996. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. InKnox, R.O'B, W., Corfield, R. M., and Dunay, R. E., eds. Correlation of the early Paleogene in Northwest Europe. Geological Society Special Publication 101:401441.CrossRefGoogle Scholar
Tremolada, F., and Bralower, T. J. 2004. Nannofossil assemblage fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): Paleoceanographic implications. Marine Micropaleontology 52:107116.CrossRefGoogle Scholar
Tremolada, F., Erba, E., and Bralower, T. J. 2007. A review of calcareous nannofossil changes during the early Aptian Oceanic Anoxic Event 1a and the Paleocene-Eocene Thermal Maximum: the influence of fertility, temperature, and pCO2. GSA Special Papers 424:8796.Google Scholar
Tripati, A. K., and Elderfield, H. 2004. Abrupt hydrographic changes in the equatorial Pacific and subtropical Atlantic from foraminiferal Mg/Ca indicate greenhouse origin for the thermal maximum at the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems 5.CrossRefGoogle Scholar
Villa, G., and Persico, D. 2006. Late Oligocene climatic changes: evidence from calcareous nannofossils at Kerguelen Plateau Site 748 (Southern Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology 231:110119.CrossRefGoogle Scholar
Villa, G., Fioroni, C., Pea, L., Bohaty, S., and Persico, D. 2008. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology 69:173192.CrossRefGoogle Scholar
Wei, W., and Wise, S. W. Jr. 1990. Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 79:2961.CrossRefGoogle Scholar
Wei, W., Villa, G., and Wise, S. W. Jr. 1992. Paleoceanographic implications of Eocene-Oligocene calcareous nannofossils from Sites 711 and 748 in the Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results 120:979999.Google Scholar
Westerhold, T., Röhl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L. J., and Zachos, J. C. 2007. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: implication from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography 22:PA2201.CrossRefGoogle Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Block, J. L., Boyer, D. M., and Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993996.CrossRefGoogle ScholarPubMed
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in the global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., and Premoli-Silva, I. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302:15511554.CrossRefGoogle ScholarPubMed
Zachos, J. C., Kroon, D., Blum, P., et al. 2004. Proceedings of the Ocean Drilling Program, Initial Reports 208.Google Scholar
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 308:16111615.CrossRefGoogle ScholarPubMed
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34:737740.CrossRefGoogle Scholar
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T. 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth and Planetary Science Letters 299:242249.CrossRefGoogle Scholar