Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T10:18:36.915Z Has data issue: false hasContentIssue false

Changes in bivalve functional and assemblage ecology in response to environmental change in the Caribbean Neogene

Published online by Cambridge University Press:  08 February 2016

Jill S. Leonard-Pingel
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0244, United States of America. E-mail: jsleonar@ucsd.edu
Jeremy B. C. Jackson
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0244, United States of America, and Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Box 072, Balboa, Republic of Panama
Aaron O'Dea
Affiliation:
Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama

Abstract

We documented changes in the relative abundance of bivalve genera and functional groups in the southwest Caribbean over the past 11 Myr to determine their response to oceanographic changes associated with the closure of the Central American Seaway ca. 3.5 Ma. Quantitative bulk samples from 29 localities yielded 106,000 specimens in 145 genera. All genera were assigned to functional groups based on diet, relationship to the substrate, and mobility. Ordinations of assemblages based on quantitative data for functional groups demonstrated strong shifts in community structure, with a stark contrast between assemblages older than 5 Ma and those younger than 3.5 Ma. These changes are primarily due to an increase in the abundance of attached epifaunal bivalves (e.g., Chama, Arcopsis, and Barbatia) and a decrease in infaunal bivalves (e.g., Varicorbula and Caryocorbula). Taxa associated with seagrasses, including deposit-feeding and chemosymbiotic bivalves (e.g., Lucina), also increased in relative abundance compared to suspension feeders. The composition of bivalve assemblages is correlated with the carbonate content of sediments and the percentage of skeletal biomass that is coral. Our results strongly support the hypothesis that increases in the extent of coral reefs and Thalassia communities were important drivers of biologic turnover in Neogene Caribbean benthic communities.

Type
Featured Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:926.CrossRefGoogle Scholar
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1993. Diversity of Atlantic coastal plain Mollusks since the Pliocene. Science 260:16261629.CrossRefGoogle ScholarPubMed
Anderson, L. C. 1994. Paleoenvironmental control of species distributions and intraspecific variability in Neogene Corbulidae (Bivalvia: Myacea) of the Dominican Republic. Journal of Paleontology 68:460478.CrossRefGoogle Scholar
Aubry, M. P., and Berggren, W. A.Newest biostratigraphy. Pp. 3840in Collins and Coates 1999.Google Scholar
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., and Lea, D. W. 2005. Final closure of Panama and the onset of Northern Hemisphere glaciation. Earth and Planetary Science Letters 237:3344.CrossRefGoogle Scholar
Beesley, P. L., Ross, G. J. B., and Wells, A., eds. 1998. Mollusca: the southern synthesis. Fauna of Australia, Vol. 5. CSIRO Publishing, Melbourne.Google Scholar
Birkeland, C. 1987. Nutrient availability as a major determinant of differences among coastal hard-substratum communities in different regions of the tropics. UNESCO Reports in Marine Science 46:4597.Google Scholar
Boyd, S. E. 1998. Order Arcoida. Pp. 253260in Beesley et al. 1998.Google Scholar
Brett, C. E. 1998. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241262.CrossRefGoogle Scholar
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during late Cenozoic turnover of Caribbean reefs. Paleobiology 25:88200.CrossRefGoogle Scholar
Bush, A., and Brame, R. I. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.CrossRefGoogle Scholar
Cheetham, A. H., and Jackson, J. B. C. 1996. Speciation, extinction, and the decline of erect growth in Neogene and Quaternary cheilostome bryozoans of tropical America. Pp. 205233in Jackson et al. 1996.Google Scholar
Cheetham, A. H., Jackson, J. B. C., and Sanner, J. 2001. Evolutionary significance of sexual and asexual modes of propagation in Neogene species of bryozoan Metrarabdotos in tropical America. Journal of Paleontology 75:564577.2.0.CO;2>CrossRefGoogle Scholar
Coates, A. G. 1999a. Lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica, to Colon, Panama. Pp. 1738in Collins and Coates 1999.Google Scholar
Coates, A. G. 1999b. Appendix B: stratigraphic sections. Pp. 299348in Collins and Coates 1999.Google Scholar
Coates, A. G., and Obando, J. A. 1996. The geologic evolution of the Central American Isthmus. Pp. 2156in Jackson et al. 1996.Google Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104:814828.2.3.CO;2>CrossRefGoogle Scholar
Coates, A. G., Aubry, M. P., Berggren, W. A., Collins, L. S., and Kunk, M. 2003. Early Neogene history of the Central American arc from Bocas del Toro, western Panama. Geological Society of America Bulletin 115:271287.2.0.CO;2>CrossRefGoogle Scholar
Coates, A. G., Collins, L. S., Aubry, M. P., and Berggren, W. A. 2004. The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin 116:13271344.CrossRefGoogle Scholar
Coates, A. G., McNeill, D. F., Aubry, M. P., Berggren, W. A., and Collins, L. S. 2005. An introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribbean Journal of Science 41:374391.Google Scholar
Collins, L. S. 1993. Neogene paleoenvironments of the Bocas del Toro basin, Panama. Journal of Paleontology 67:699710.CrossRefGoogle Scholar
Collins, L. S. 1996. Environmental changes in Caribbean shallow waters relative to the closing Tropical American Seaway. Pp. 130167in Jackson et al. 1996.Google Scholar
Collins, L. S. 1999. The Miocene to Recent diversity of Caribbean benthic foraminifera from the Central American isthmus. Pp. 91107in Collins and Coates 1999.Google Scholar
Collins, L. S., and Coates, A. G., eds. 1999. A paleobiotic survey of Caribbean faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology 357.Google Scholar
Collins, L. S., Coates, A. G., Jackson, J. B. C., and Obando, J. 1995. Timing and rates of emergence of the Limon and Bocas del Toro basins: Caribbean effects of Cocos Ridge subduction? InMann, P., ed. Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America Special Paper 295:263289.CrossRefGoogle Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996a. Earliest evolution associated with the closure of the Tropical American Seaway. Proceedings of the National Academy of Sciences USA 93:60696072.CrossRefGoogle ScholarPubMed
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M. P., and Zhang, J. 1996b. The late Miocene Panama isthmian strait. Geology 24:687690.2.3.CO;2>CrossRefGoogle Scholar
Cronin, T. M., and Dowsett, H. J. 1996. Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus. Pp. 76104in Jackson et al. 1996.Google Scholar
Domning, D. P. 2001. Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology 166:2750.CrossRefGoogle Scholar
Ellingsen, K. E. 2001. Biodiversity of a continental shelf soft-sediment macrobenthos community. Marine Ecology Progress Series 218:115.CrossRefGoogle Scholar
Gilinsky, N. L., and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology 20:245258.CrossRefGoogle Scholar
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C. 2001. Role of Panama uplift on oceanic freshwater balance. Geology 29:207210.2.0.CO;2>CrossRefGoogle Scholar
Hughes, T. P. 1989. Community structure and diversity of coral reefs: the role of history. Ecology 70:275279.CrossRefGoogle Scholar
Jablonski, D. 2003. The interplay of physical and biotic factors in macroevolution. Pp. 235252inRothschild, L. and Lister, A., eds. Evolution on planet Earth. Elsevier, Amsterdam.CrossRefGoogle Scholar
Jackson, J. B. C. 1972. The ecology of molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Marine Biology 14:304337.CrossRefGoogle Scholar
Jackson, J. B. C. 1973. The ecology of molluscs of Thalassia communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bulletin of Marine Science 23:313350.Google Scholar
Jackson, J. B. C., and Erwin, D. H. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution 21:322328.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Jung, P., Coates, A. G., and Collins, L. S. 1993. Diversity and extinction of tropical American mollusks and emergence of the Isthmus of Panama. Science 260:16241626.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. 1996. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America. Pp. 193230in Collins and Coates 1999.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21:5273.CrossRefGoogle Scholar
Johnson, K. G., Todd, J. A., and Jackson, J. B. C. 2007. Coral reef development drives molluscan diversity increase at local and regional scales in the late Neogene and Quaternary of the southwestern Caribbean. Paleobiology 33:2452.CrossRefGoogle Scholar
Johnson, K. G., Jackson, J. B. C., and Budd, A. F. 2008. Caribbean reef development was independent of coral diversity over 28 million years. Science 319:15211523.CrossRefGoogle ScholarPubMed
Keigwin, L. 1982. Isotopic paleoceanography of the Caribbean and East Pacific: role of Panama uplift in late Neogene time. Science 217:350353.CrossRefGoogle Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2002a. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.2.0.CO;2>CrossRefGoogle Scholar
Kidwell, S. M. 2002b. Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live-dead studies. Geobios 24:107119.CrossRefGoogle Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 115209inAllison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.CrossRefGoogle Scholar
Kidwell, S. M., and Flessa, K. W. 1995. The quality of the fossil record: populations, species, and communities. Annual Review of Ecology and Systematics 26:269299.CrossRefGoogle Scholar
Kirby, M. X., and Jackson, J. B. C. 2004. Extinction of a fast growing oyster and changing ocean circulation in Pliocene tropical America. Geology 32:10251028.CrossRefGoogle Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. The high-resolution estimates of temporal mixing in shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Lamprell, K., Healy, J. M., and Dyne, G. R. 1998. Superfamily Myoidea. Pp. 363366in Beesley et al. 1998.Google Scholar
Landau, B., Marques Da Silva, C., and Vermeij, G. 2009. Pacific elements in the Caribbean Neogene gastropod fauna: the source-sink model, larval development, disappearance, and faunal units. Bulletin de la Société Géologique de France 180:343352.CrossRefGoogle Scholar
McCune, B., and Grace, J. B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Ore.Google Scholar
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.CrossRefGoogle Scholar
McKinney, F. K., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.CrossRefGoogle ScholarPubMed
McNeill, D. F., Coates, A. G., Budd, A. F., and Borne, P. F. 2000. Integrated paleontologic and paleomagnetic stratigraphy of the upper Neogene deposits around Limon, Costa Rica: a coastal emergence record of the Central American Isthmus. Geological Society of America Bulletin 112:963981.2.0.CO;2>CrossRefGoogle Scholar
Mikkelsen, P. M., and Bieler, R. 2001. Varicorbula (Bivalvia: Corbulidae) of the western Atlantic: taxonomy, anatomy, life habits, and distribution. Veliger 44:271293.Google Scholar
O'Dea, A., and Jackson, J. B. C. 2009. Environmental change drove macroevolution in cupuladriid bryozoans. Proceedings of the Royal Society of London B 276:36293634.Google ScholarPubMed
O'Dea, A., and Okamura, B. 2000. Intracolony variation in zooid size in cheilostome bryozoans as a new technique for investigating palaeoseasonality. Palaeogeography, Palaeoclimatology, Palaeoecology 162:21392322.CrossRefGoogle Scholar
O'Dea, A., Jackson, J. B. C., Fortunato, H., Smith, J. T., D'Croz, L., Johnson, K. G., and Todd, J. A. 2007. Environmental change preceded Caribbean extinction by 2 million years. Proceedings of the National Academy of Sciences USA 104:55015506.CrossRefGoogle ScholarPubMed
Oliver, P. G., and Holmes, A. M. 2006. The Arcoidea (Mollusca: Bivalvia): a review of the current phenetic-based systematics. Zoological Journal of the Linnean Society 148:237251.CrossRefGoogle Scholar
Pandolfi, J. M. 1999. Response of Pleistocene coral reefs to environmental change over long temporal scales. American Zoologist 39:113130.CrossRefGoogle Scholar
Petuch, E. J. 1982. Geographical heterochrony: contemporaneous coexistence of Neogene and Recent molluscan faunas in the Americas. Palaeogeography, Palaeoclimatology, Paleoecology 37:277312.CrossRefGoogle Scholar
Petuch, E. J. 1995. Molluscan diversity in the Late Neogene of Florida: evidence for a two-staged mass extinction. Science 270:275277.CrossRefGoogle Scholar
Shin, P. K. S., and Ellingsen, K. E. 2004. Spatial patterns of soft-sediment benthic diversity in subtropical Hong Kong waters. Marine Ecology Progress Series 276:2535.CrossRefGoogle Scholar
Smith, J. T., and Jackson, J. B. C. 2009. Ecology of extreme faunal turnover of tropical American scallops. Paleobiology 35:7793.CrossRefGoogle Scholar
Stanley, S. M. 1969. Bivalve mollusk burrowing aided by discordant shell ornamentation. Science 166:634635.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125.CrossRefGoogle Scholar
Stanley, S. M. 1972. Functional morphology and evolution of bysally attached bivalve mollusks. Journal of Paleontology 46:165210.Google Scholar
Stanley, S. M. 1981. Infaunal survival: alternative functions of shell ornamentation in the Bivalvia (Mollusca). Paleobiology 7:384393.CrossRefGoogle Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.CrossRefGoogle Scholar
Stanley, S. M., and Campbell, L. D. 1981. Neogene mass extinction of Western Atlantic molluscs. Nature 293:457459.CrossRefGoogle Scholar
Surlyk, F. 1972. Morphological adaptations and population structure of the Danish chalk brachiopods (Maastrichtian, Upper Cretaceous). Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 19:157.Google Scholar
Teranes, J. L., Geary, D. H., and Bemis, B. E. 1996. The oxygen isotopic record of seasonality in Neogene bivalves from the Central American Isthmus. Pp. 105129in Jackson et al. 1996.Google Scholar
Thomas, R. D. K. 1978a. Limits to opportunism in the evolution of the Arcoida (Bivalvia). Philosophical Transactions of the Royal Society of London B 284:335344.Google Scholar
Thomas, R. D. K. 1978b. Shell form and the ecological range of living and extinct Arcoida. Paleobiology 4:181194.CrossRefGoogle Scholar
Todd, J. A. 2001a. Identification and taxonomic consistency. InNeogene marine biota of tropical America. http://nmita.geology.uiowa.edu/database/mollusc/molluscintro.htm.Google Scholar
Todd, J. A. 2001b. Molluscan life habits database. InNeogene marine biota of tropical America. http://porites.uiowa.edu/database/mollusc/mollusclifestyles.htm.Google Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 296:571577.CrossRefGoogle Scholar
Vermeij, G. J., and Herbert, G. S. 2004. Measuring relative abundance in fossil and living assemblages. Paleobiology 30:14.2.0.CO;2>CrossRefGoogle Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American molluscs: endemism, architecture, and the Panama land bridge. Malacologia 27:2941.Google Scholar
Veron, J. E. N. 2000. Coral of the world. Australian Institute of Marine Sciences, Townsville, Australia.Google Scholar
Vrba, E. S. 2005. Mass turnover and heterochrony events in response to physical change. Paleobiology 31:157174.CrossRefGoogle Scholar
Waller, T. R. 1993. The evolution of “Chlamys” (Mollusca: Bivalvia: Pectinidae) in the tropical Western Atlantic and Eastern Pacific. American Malacological Bulletin 10:195249.Google Scholar
Wilson, B. 1998. Pteriomorpha introduction. Pp. 249250in Beesley et al. 1998.CrossRefGoogle Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Proceedings of the American Philosophical Society 110:425433.Google Scholar
Zuschin, M., Hohenegger, J., and Steininger, F. F. 2000. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea. Coral Reefs 20:107116.CrossRefGoogle Scholar