Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T07:40:24.016Z Has data issue: false hasContentIssue false

Character diversification and patterns of evolution in early vascular plants

Published online by Cambridge University Press:  08 April 2016

Andrew H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138
Karl J. Niklas
Affiliation:
Division of Biological Sciences, Cornell University, Ithaca, New York 14850
Patricia G. Gensel
Affiliation:
Department of Biology, University of North Carolina, Chapel Hill, North Carolina 21514
Bruce H. Tiffney
Affiliation:
Department of Biology, Yale University, New Haven, Connecticut 06520

Abstract

Available data on the stratigraphic ranges of latest Silurian and Devonian vascular plant macro-fossils (sporophytes) and spores provide insights into the tempo and mode of early tracheophyte evolution. Patterns of diversification, origination, and extinction conform in general to the predictions of Sepkoski's kinetic model of diversification. Rates of generic origination and extinction vary not only through time but also between organ systems for a single time interval. This fact, coupled with data on longevity and turnover and comparative morphological observations, can be used to document mosaic evolution in early vascular plant history. Mosaic evolution is an important theme in plant evolution; indeed, what we recognize as macroevolutionary events often correlate with brief periods of pronounced mosaicism. Such evolutionary patterns reflect the developmental biology of tracheophytes in which individual organs often have life spans that are considerably shorter than the life of the whole plant. Under these conditions, individual organs or organ systems can respond to different sets of evolutionary pressures.

The major period of early vascular plant diversification occurred during the late Early and early Middle Devonian Period, 30 Myr or more after the origin of the group. Such lags in diversification are not uncommon in the fossil record. Sometimes they reflect extrinsic controls on diversification, but in other cases they appear to be a consequence of intrinsic rates of origination and extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, K. C. 1980. A review in situ Late Silurian and Devonian spores. Rev. Palaeobot. Palynol. 29:253270.Google Scholar
Armstrong, R. L. 1978. Pre-Cenozoic Phanerozoic time scale—computer file of critical dates and consequences of new and in progress decay-constant revisions. Pp. 7391. In: Cohee, G. V., Glaessner, M. F., and Hedberg, H. D., eds. Contributions to the Geologic Time Scale. Am. Assoc. Petrol. Geol., Stud. Geol. no. 6.Google Scholar
Banks, H. P. 1975a. Early vascular land plants: proof and conjecture. BioScience. 25:730737.Google Scholar
Banks, H. P. 1975b. The oldest vascular plants: a note of caution. Rev. Palaeobot. Palynol. 20:1325.Google Scholar
Banks, H. P. 1980. Floral assemblages in the Siluro-Devonian. Pp. 124. In: Dilcher, D. L. and Taylor, T. N., eds. Biostratigraphy of Fossil Plants. Dowden, Hutchinson, & Ross; Stroudsburg, Pa.Google Scholar
Beck, C. B. 1969. Problems of generic delimitation in paleobotany. Proc. N. Am. Paleontol. Conv. C:173193.Google Scholar
Beck, C. B. 1981. Archaeopteris and its role in vascular plant evolution. Pp. 193230. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Vol. 1. Praeger; New York.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier; Amsterdam.Google Scholar
Chaloner, W. G. 1967. Spores and land plant evolution. Rev. Palaeobot. Palynol. 1:8393.Google Scholar
Chaloner, W. G. 1970. The rise of the first land plants. Biol. Rev. 45:353377.CrossRefGoogle Scholar
Chaloner, W. G. and Sheerin, A. 1979. Devonian macrofloras. Spec. Pap. Palaeontol. 23:145161.Google Scholar
Dawson, J. W. 1859. On fossil plants from the Devonian rocks of Canada. Q.J. Geol. Soc. Lond. 15:477488.CrossRefGoogle Scholar
Dawson, J. W. 1871. The fossil plants of the Devonian and Upper Silurian Formations of Canada. 92 pp. Geol. Surv. Can. Dawson Brothers; Montreal.CrossRefGoogle Scholar
Edwards, D., Bassett, M. G., and Rogerson, E. C. W. 1979. The earliest vascular land plants: continuing the search for proof. Lethaia. 12:313324.Google Scholar
Gensel, P. G. 1980. Devonian in situ spores: a survey and discussion. Rev. Palaeobot. Palynol. 30:101132.CrossRefGoogle Scholar
Gensel, P. G. 1982. On the contributions of Sir J. W. Dawson to the study of early land plants (Devonian) and current ideas concerning their nature, diversity and evolutionary relationships. Proc. 3d N. Am. Paleontol. Con. 1:199204.Google Scholar
Gensel, P. G. and Andrews, H. N.In press.Plant Plant Life in the Devonian Period. Praeger; New York.Google Scholar
Giannasi, D. E. and Niklas, K. J. 1981. Comparative chemistry of some fossil and extant Fagaceae. Am. J. Bot. 68:762770.Google Scholar
Gray, J. and Boucot, A. J. 1977. Early vascular land plants: proof and conjecture. Lethaia. 10:145174.Google Scholar
Gray, J., Massa, D., and Boucot, A. J. 1982. Caradocian land plant microfossils from Libya. Geology. 10:197201.2.0.CO;2>CrossRefGoogle Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R. 1982. A Geologic Time Scale. Cambridge Univ. Press; Cambridge.Google Scholar
Kevan, P. G., Chaloner, W. G., and Savile, D. B. O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology. 18:391417.Google Scholar
Kidston, R. and Lang, W. H. 1917-1921. On Old Red Sandstone plants showing structure from the Rhynie Chert bed, Aberdeenshire. Pans I–IV. Trans. R. Soc. Edinburgh. 51:761784, 52:603-627, 52:643-683, 52:831-854.Google Scholar
Knoll, A. H., Niklas, K. J., and Tiffney, B. H. 1979. Phanerozoic land plant diversity in North America. Science. 206:14001402.Google Scholar
Levinton, J. S. 1979. A theory of diversity equilibrium and morphological evolution. Science. 204:335336.CrossRefGoogle ScholarPubMed
McGregor, D. C. 1977. Lower and Middle Devonian spores of eastern Gaspé, Canada. II. Biostratigraphy. Palaeontographica. 163B:111142.Google Scholar
McGregor, D. C. 1979a. Spores in Devonian stratigraphical correlation. Palaeontol. Assoc. Spec. Pap. Palaeontol. 23:163184.Google Scholar
McGregor, D. C. 1979b. Devonian miospores of North America. Palynology. 3:3152.Google Scholar
Manchester, S. R. 1979. Extinct juglandaceous fruits, wood, and leaves allied to Pterocarya from the Eocene of Oregon. Bot. Soc. Am. Misc. Publ. 157:34.Google Scholar
Niklas, K. J. 1978a. Coupled evolutionary rates and the fossil record. Brittonia. 30:373394.CrossRefGoogle Scholar
Niklas, K. J. 1978b. Morphometric relationships and rates of evolution among Paleozoic vascular plants. Evol. Biol. 11:509543.Google Scholar
Niklas, K. J. and Smocovitis, V. 1983. Evidence for a conducting strand in early Silurian (Llandoverian) plants: implications for the evolution of the land plants. Paleobiology. 9:126137.CrossRefGoogle Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Evol. Biol. 12:189.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversification: a statistical analysis at the species level. Nature. 303:614616.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H.In press. Patterns in vascular land plant diversification: a factor analysis at the species level. Factors in Phanerozoic Diversity; proceedings of a symposium, Pacific Sec. AAAS, June 1982.Google Scholar
Palmer, A. R. 1983. Decade of North American Geology 1983 geologic time scale. Geology. 11:503504.Google Scholar
Potonié, R. 1956. Die stratigraphische Inkongruität der Organe des Pflanzenkörpers. Paläontol. Z. 30:8894.Google Scholar
Pratt, L. M., Phillips, T. L., and Dennison, J. M. 1978. Evidence of nonvascular land plants from the early Silurian (Llandoverian) of Virginia, U.S.A. Rev. Palaeobot. Palynol. 25:121149.CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science. 177:10651071.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. no. 13. Pp. 8591.Google Scholar
Richardson, J. B. 1969. Devonian spores. Pp. 193222. In: Tschudy, R. H. and Scott, R. A., eds. Aspects of Palynology. Wiley; New York.Google Scholar
Richardson, J. B. 1974. The stratigraphic utilization of some Silurian and Devonian miospore species in the northern hemisphere: an attempt at synthesis. Int. Symp. Belg. Micropalaeontol. Lim., Namur, 1974, Publ. 9:130.Google Scholar
Schopf, J. M. 1978. Foerstia and recent interpretations of early, vascular land plants. Lethaia. 11:139143.Google Scholar
Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology. 4:223251.CrossRefGoogle Scholar
Sepkoski, J.J. 1979. A kinetic model of Phaneorozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.Google Scholar
Sepkoski, J. J. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology. 7:3653.Google Scholar
Sepkoski, J. J., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phaerozoic marine diversity and the fossil record. Nature. 293:435437.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press: New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press; New York.Google Scholar
Smiley, C. J. and Huggins, L. M. 1981. Pseudofagus idahoensis, n. gen. et ap. (Fagaceae) from the Miocene Clarkia Flora of Idaho. Am. J. Bot. 68:741761.Google Scholar
Sporne, K. R. 1976. Character correlations among angiosperms and the importance of fossil evidence in assessing their significance. Pp. 312329. In: Beck, C. B., ed. Origin and Early Evolution of Angiosperms. Columbia Univ. Press; New York.Google Scholar
Sporne, K. R. 1980. A re-investigation of character correlations among dicotyledons. New Phytol. 85:419449.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman; San Francisco.Google Scholar
Stebbins, G. L. 1974. Flowering Plants: Evolution above the Species Level. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Stevens, P. F. 1980. Evolutionary polarity of character states. Ann. Rev. Ecol. Syst. 11:333358.Google Scholar
Strother, P. K. and Traverse, A. 1979. Plant microfossils from Llandoverian and Wenlockian rocks of Pennsylvania. Palynology. 3:121.CrossRefGoogle Scholar
Takhtajan, A. 1959. Die Evolution der Angiospermen. Fischer; Jena.Google Scholar
Takhtajan, A. 1969. Flowering Plants: Origin and Dispersal. Oliver & Boyd; Edinburgh.Google Scholar
Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pp. 193230. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Vol. 2. Praeger; New York.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology. 12:684709.Google Scholar
Van Eysinga, F. W. B. (compiler). 1975. Geological Timetable. 3d ed.Elsevier; Amsterdam.Google Scholar
Westoll, T. S. 1949. On the origin of the Dipnoi. Pp. 121184. In: Jepsen, G., Mayr, E., and Simpson, G. G., eds. Genetics, Paleontology, and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Wheeler, E., Scott, R. A., and Barghoorn, E. S. 1977. Fossil dicotyledonous woods from Yellowstone National Park. J. Arnold Arbor. 58:280302.Google Scholar
Whittaker, R. H. 1977. Evolution of species diversity in land communities. Evol. Biol. 10:167.Google Scholar