Published online by Cambridge University Press: 08 February 2016
Stratigraphic data are compared to morphologic data in terms of their fit to phylogenetic hypotheses for 29 data sets taken from the literature. Stratigraphic fit is measured using MacClade's stratigraphic character, which tracks the number of independent discrepancies between observed order and the order of occurrence that would be expected on the basis of a given phylogenetic hypothesis. Acceptance of a phylogenetic hypothesis despite such discrepancies requires ad hoc hypotheses concerning differential probabilities of preservation and recovery. These stratigraphic ad hoc hypotheses are treated as logically equivalent to morphologic ad hoc hypotheses of homoplasy. The retention index is used to compare the number of stratigraphic and morphologic ad hoc hypotheses required by given phylogenetic hypotheses. Each data set is subjected to five analyses, varying in the constraints imposed on the structure of the phylogenetic tree against which fit is measured. Analyses 1–4 compare the stratigraphic and morphologic retention indices using phylogenetic trees consistent with the morphologically most-parsimonious cladogram reported in the original study. Analysis 5 compares retention indices using the overall (stratigraphically and morphologically) most-parsimonious phylogenetic tree, which may be, but is not necessarily, consistent with the reported cladogram. Proceeding from Analysis 1 to Analysis 5, stratigraphic data are allowed greater influence in determining the structure of phylogenetic trees, with the trees in Analysis 1 derived without reference to the stratigraphic character and the trees in Analysis 5 derived from full interaction of stratigraphic and morphologic characters. Morphologic and stratigraphic retention indices for these 29 studies cannot be statistically distinguished in comparisons 3–5, suggesting very similar degrees of fit. The values of these retention indices are high, indicating a generally high level of congruence under these phylogenetic hypotheses. Significant gains (49%) in stratigraphic fit can be realized without significant loss (4%) in morphologic fit as the stratigraphic and morphologic evidence are both allowed to participate in constraining the structure of phylogenetic hypotheses. These results suggest that arguments based on alleged “noisiness” of stratigraphic data offer inadequate grounds for ignoring stratigraphic order in phylogenetic analysis. In terms of congruence, stratigraphic and morphologic data perform about equally well.