Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T19:05:37.236Z Has data issue: false hasContentIssue false

Diets, habitat preferences, and niche differentiation of Cenozoic sirenians from Florida: evidence from stable isotopes

Published online by Cambridge University Press:  08 February 2016

Bruce J. MacFadden
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611. E-mail: bmacfadd@flmnh.ufl.edu, E-mail: loligo@flmnh.ufl.edu, and E-mail: dsjones@flmnh.ufl.edu
Pennilyn Higgins
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611. E-mail: bmacfadd@flmnh.ufl.edu, E-mail: loligo@flmnh.ufl.edu, and E-mail: dsjones@flmnh.ufl.edu
Mark T. Clementz*
Affiliation:
Department of Earth Sciences, University of California, Santa Cruz, California 95064
Douglas S. Jones
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611. E-mail: bmacfadd@flmnh.ufl.edu, E-mail: loligo@flmnh.ufl.edu, and E-mail: dsjones@flmnh.ufl.edu
*
Present address: Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949. E-mail: clementz@sms.si.edu

Abstract

Cenozoic sediments of Florida contain one of the most highly fossiliferous sequences of extinct sirenians in the world. Sirenians first occur in Florida during the Eocene (ca. 40 Ma), have their peak diversity during the late Oligocene–Miocene (including the widespread dugongid Metaxytherium), and become virtually extinct by the late Miocene (ca. 8 Ma). Thereafter during the Pliocene and Pleistocene, sirenians are represented in Florida by abundant remains of fossil manatees (Trichechus sp.). Stable isotopic analyses were performed on 100 teeth of fossil sirenians and extant Trichechus manatus from Florida in order to reconstruct diets (as determined from δ13C values) and habitat preferences (as determined from δ18O values) and test previous hypotheses based on morphological characters and associated floral and faunal remains. A small sample (n = 6) of extant Dugong dugon from Australia was also analyzed as an extant model to interpret the ecology of fossil dugongs.

A pilot study of captive manatees and their known diet revealed an isotopic enrichment (ɛ) in δ13C of 14.0‰, indistinguishable from previously reported ɛ for extant medium to large terrestrial mammalian herbivores with known diets. The variation in δ18OV-SMOW reported here is interpreted to indicate habitat preferences, with depleted tooth enamel values (≈25‰) representing freshwater rivers and springs, whereas enriched values (≈30‰) indicate coastal marine environments. Taken together, the Eocene to late Miocene sirenians (Protosirenidae and Dugongidae) differ significantly in both δ13C and δ18O from Pleistocene and Recent manatees (Trichechidae). In general, Protosiren and the fossil dugongs from Florida have carbon isotopic values that are relatively positive (mean δ13C = −0.9‰) ranging from −4.8‰ to 5.6‰, interpreted to represent a specialized diet of predominantly seagrasses. The oxygen isotopic values (mean δ18O = 29.2‰) are likewise relatively positive, indicating a principally marine habitat preference. These interpretations correlate well with previous hypotheses based on morphology (e.g., degree of rostral deflection) and the known ecology of modern Dugong dugon from the Pacific Ocean. In contrast, the fossil and extant Trichechus teeth from Florida have relatively lower carbon isotopic values (mean δ13C = −7.2‰) that range from −18.2‰ to 1.7‰, interpreted as a more generalized diet ranging from C3 plants to seagrasses. The relatively lower oxygen isotopic values (mean δ18O = 28.1 ‰) are interpreted as a more diverse array of freshwater and marine habitat preferences than that of Protosiren and fossil dugongs. This study of Cenozoic sirenians from Florida further demonstrates that stable isotopes can test hypotheses previously based on morphology and associated floral and faunal remains. All these data sets taken together result in a more insightful approach to reconstructing the paleobiology of this interesting group of ancient aquatic mammalian herbivores.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ambrose, S. 1998. Implications of 24 controlled diet experiments for diet reconstruction with carbon isotopes of bone collagen and carbonate. Journal of Vertebrate Paleontology, Abstracts of Papers 18:24A.Google Scholar
Ames, A. L., Van Vleet, E. S., and Sackett, W. M. 1996. The use of stable carbon isotope analysis for determining the dietary habits of the Florida manatee, Trichechus manatus latirostris. Marine Mammal Science 12:555563.CrossRefGoogle Scholar
Andersen, S. H., and Nielsen, E. 1983. Exchange of water between the harbor porpoise, Phocoena phocoena, and the environment. Experientia 39:5253.CrossRefGoogle ScholarPubMed
Billups, K., and Schrag, D. P. 2002. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17:111.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., and Jaeger, J.-J. 1996. Isotope biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306318.CrossRefGoogle Scholar
Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials. II. Atmospheric, terrestrial, marine, and freshwater environments. Pp. 173195in Coleman, D. C. and Fry, B., eds. Carbon isotope techniques. Academic Press, San Diego.CrossRefGoogle Scholar
Bryant, J. D. 1991. New early Barstovian (middle Miocene) vertebrates from the upper Torreya Formation, eastern Florida panhandle. Journal of Vertebrate Paleontology 11:472489.CrossRefGoogle Scholar
Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.CrossRefGoogle Scholar
Bryant, J. D., Froelich, P. N., Showers, W. J., and Genna, B. J. 1996. A tale of two quarries: biological and taphonomic signatures in the oxygen isotopic composition of tooth enamel phosphate from modern and Miocene equids. Palaios 11:397408.CrossRefGoogle Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.CrossRefGoogle ScholarPubMed
Cerling, T. E., and Sharp, Z. 1997. Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology 126:173186.CrossRefGoogle Scholar
Clementz, M., and Koch, P. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461472.CrossRefGoogle ScholarPubMed
Coplen, T. B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66:273276.CrossRefGoogle Scholar
Coplen, T. B., and Kendall, C. 2000. Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. Geological Survey's NAS-QAN and benchmark surface-water networks. Open-file Report 00–160. U.S. Geological Survey, Reston, Va.Google Scholar
Dienes, P. 1980. The isotopic composition of reduced organic carbon. Pp. 329406in Fritz, P. and Fontes, J. C., eds. Handbook of environmental isotope geochemistry. 1. The terrestrial environment. Elsevier, Amsterdam.Google Scholar
Domning, D. P. 1977. An ecological model for late Tertiary sirenian evolution in the North Pacific Ocean. Systematic Zoology 25:352362.CrossRefGoogle Scholar
Domning, D. P. 1981. Sea cows and sea grasses. Paleobiology 7:417420.CrossRefGoogle Scholar
Domning, D. P. 1982. Evolution of manatees: a speculative history. Journal of Paleontology 56:599619.Google Scholar
Domning, D. P. 1988. Fossil Sirenia of the West Atlantic and Caribbean Region. I. Metaxytherium floridanum. Journal of Vertebrate Paleontology 8:395426.CrossRefGoogle Scholar
Domning, D. P. 1989a. Fossil sirenians from the Suwannee River, Florida and Georgia. Pp. 5460in Morgan, G. S., ed. Miocene paleontology and stratigraphy of the Suwannee River basin of north Florida and south Georgia. Guidebook 30, Southeastern Geological Society, Tallahassee.Google Scholar
Domning, D. P. 1989b. Fossil Sirenia of the West Atlantic and Caribbean Region. II. Dioplotherium manigaulti Cope, 1883. Journal of Vertebrate Paleontology 9:415428.CrossRefGoogle Scholar
Domning, D. P. 1990. Fossil Sirenia of the West Atlantic and Caribbean Region. IV. Corystosiren varguezi, gen. et sp. nov. Journal of Vertebrate Paleontology 10:361371.CrossRefGoogle Scholar
Domning, D. P. 1994. A phylogenetic analysis of the Sirenia. In Berta, A. and Deméré, T. A., eds. Contributions in marine mammal paleontology honoring Frank C. Whitmore, Jr. Proceedings of the San Diego Society of Natural History 29:177189.Google Scholar
Domning, D. P. 1997a. Sirenia. Pp. 383391in Kay, R. F. et al., eds. Vertebrate paleontology in the Neotropics: the Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, D.C.Google Scholar
Domning, D. P. 1997b. Fossil Sirenia of the West Atlantic and Caribbean Region. VI. Crenatosiren olseni (Reinhart, 1976). Journal of Vertebrate Paleontology 17:397412.CrossRefGoogle Scholar
Domning, D. P. 1999. Fossils explained 24: Sirenians (seacows). Geology Today 15:7579.CrossRefGoogle Scholar
Domning, D. P. 2001a. Evolution of the Sirenia and Desmostylia. Pp. 151168in Mazin, J.-M. and de Buffrénil, V., eds. Secondary adaptation of tetrapods to life in the water: proceedings of the international meeting, Poitiers, 1996. Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
Domning, D. P. 2001b. Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology 166:2750.CrossRefGoogle Scholar
Domning, D. P. 2001c. The earliest known fully quadrupedal sirenian. Nature 413:625627.CrossRefGoogle ScholarPubMed
Domning, D. P., and Hayek, L. C. 1984. Horizontal tooth replacement in the Amazonian manatee (Trichechus inunguis). Mammalia 48:105127.CrossRefGoogle Scholar
Domning, D. P., Morgan, G. S., and Ray, C. E. 1982. North American Eocene sea cows (Mammalia: Sirenia). Smithsonian Contributions to Paleobiology 52:169.CrossRefGoogle Scholar
Ehleringer, J. R., Sage, R. F., Flanagan, L. B., and Pearcy, R. W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution 6:9599.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubrick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503537.CrossRefGoogle Scholar
Gremillion, P. T. 1994. Separation of streamflow components in the Econlockhatchee River System using environmental stable isotope tracers. Ph.D. dissertation. University of Central Florida, Orlando.Google Scholar
Hemminga, M. A., and Mateo, M. A. 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in stable isotopes. Marine Ecology Progress Series 140:285298.CrossRefGoogle Scholar
Hobson, K. A., Piatt, J. F., and Pitocchelli, J. 1994. Using stable isotopes to determine seabird trophic relationships. Journal of Animal Ecology 63:786798.CrossRefGoogle Scholar
Hoefs, J. 1997. Stable isotope geochemistry. Springer, Berlin.CrossRefGoogle Scholar
Hui, C. A. 1981. Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiological Zoology 54:430440.CrossRefGoogle Scholar
Hulbert, R. C. 1988. Cormohipparion and Hipparion (Mammalia, Perissodactyla, Equidae) from the late Neogene of Florida. Bulletin of the Florida State Museum (Biological Sciences) 33:229338.Google Scholar
Hulbert, R. C., ed. 2001. The fossil vertebrates of Florida. University Press of Florida, Gainesville.Google Scholar
Husar, S. L. 1978a. Dugong dugon. Mammalian Species 88:17.Google Scholar
Husar, S. L. 1978b. Trichechus manatus. Mammalian Species 93:15.Google Scholar
Ivany, L. C., Portell, R. W., and Jones, D. S. 1990. Animal-plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244258.CrossRefGoogle Scholar
Keeley, J. E., and Sandquist, D. R. 1992. Carbon: freshwater plants. Plant, Cell and Environment 15:10211035.CrossRefGoogle Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.CrossRefGoogle Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358:319322.CrossRefGoogle Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbon in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.CrossRefGoogle Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.CrossRefGoogle Scholar
Langeland, K. A. 1990. Hydrilla: a continuing problem in Florida waters. Circular No. 884. Cooperative Extension Service / Institute of Food and Agricultural Sciences, University of Florida, Gainesville.Google Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269272.CrossRefGoogle ScholarPubMed
MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16:103115.CrossRefGoogle Scholar
MacFadden, B. J., Cerling, T. E., and Prado, J. 1996. Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 11:319327.CrossRefGoogle Scholar
MacFadden, B. J., Cerling, T. E., Harris, J. M., and Prado, J. 1999. Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth. Global Ecology and Biogeography 8:137149.CrossRefGoogle Scholar
Marsh, H. 1986. The status of the dugong in Torres Strait. Pp. 5376in Haines, A. K., Williams, G. C., and Coates, D., eds. Torres Straits fisheries seminar, Port Moresby. Australian Government Publishing Service, Canberra.Google Scholar
Marsh, H., and Saalfeld, W. K. 1991. The status of the dugong in Torres Strait. In Lawrence, D. and Cansfield-Smith, T., eds. Sustainable development of traditional inhabitants of the Torres Strait region. GBRMPA Workshop Series 10:187194.Google Scholar
Marsh, H., Heinsohn, G. E., and Marsh, L. M. 1984. Breeding cycle, life history and population dynamics of the dugong, Dugong dugon (Sirenia: Dugongidae). Australian Journal of Zoology 32:767788.CrossRefGoogle Scholar
McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18:849857.CrossRefGoogle Scholar
McKenna, M. C., and Bell, S. K. 1997. Classification of mammals above the species level. Columbia University Press, New York.Google Scholar
Meyers, J., Swart, P. K., and Meyers, J. 1993. Geochemical evidence for groundwater behavior in an unconfined aquifer, South Florida. Journal of Hydrology 148:249272.CrossRefGoogle Scholar
Morgan, G. S. 1994. Miocene and Pliocene marine mammal faunas from the Bone Valley Formation of central Florida. In Berta, A. and Deméré, T. A., eds. Contributions in marine mammal paleontology honoring Frank C. Whitmore, Jr. Proceedings of the San Diego Society of Natural History 29:239268.Google Scholar
Morgan, G. S., and Hulbert, R. C. 1995. Overview of the geology and vertebrate biochronology of the Leisey Shell Pit Local Fauna, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History 37:192.Google Scholar
Nietschmann, B. 1984. Hunting and ecology of dugongs and green turtles, Torres Strait, Australia. National Geographic Society Research Report 17:625651.Google Scholar
Ortner, P. B., Lee, T. N., Milne, P. J., Zidka, R. G., Clarke, M. E., Podesta, G. P., Swart, P. K., Testa, P. A., Atkinson, L. P., and Johnson, W. R. 1995. Mississippi River flood waters reached the Gulf Stream. Geophysical Research Letters 100:13,59513,601.CrossRefGoogle Scholar
Reinhart, R. H. 1976. Fossil sirenians and desmostylids from Florida and elsewhere. Bulletin of the Florida State Museum (Biological Sciences) 20:187300.Google Scholar
Roe, L. J., Thewissen, J. G. M., Quade, J., O'Neil, J. R., Bajpai, S., Sahni, A., and Hussain, S. T. 1998. Isotopic approaches to understanding the terrestrial-to-marine transition of the earliest whales. Pp. 399422in Thewissen, J. G. M., ed. The emergence of whales. Plenum, New York.CrossRefGoogle Scholar
Savage, R. J. G., Domning, D. P., and Thewissen, J. G. M. 1994. Fossil Sirenia of the west Atlantic and Caribbean region. V. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. Journal of Vertebrate Paleontology 14:427449.CrossRefGoogle Scholar
Schoeninger, M. J., and DeNiro, M. J. 1982. Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals. Nature 297:577578.CrossRefGoogle ScholarPubMed
Simenstad, C. A., Duggins, D. O., and Quay, P. D. 1993. High turnover of inorganic carbon in kelp habitats as a cause of δ13C variability in marine food webs. Marine Biology 116:147160.CrossRefGoogle Scholar
Simpson, G. G. 1932. Fossil Sirenia of Florida and the evolution of the Sirenia. Bulletin of the American Museum of Natural History 59:419503.Google Scholar
Swart, P. K., Sternberg, L., Steinen, R., and Harrison, S. A. 1989. Controls on the oxygen and hydrogen isotopic composition of waters from Florida Bay. Chemical Geology 79:113123.Google Scholar
Swart, P. K., Dodge, R. E., and Hudson, H. J. 1996. A 240-year stable oxygen and carbon isotope record in a coral from South Florida: implications for the prediction of precipitation in southern Florida. Palaios 11:362375.CrossRefGoogle Scholar
Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., Macdonald, J. R., and Webb, S. D. 1987. Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through earliest Pliocene epochs) in North America. Pp. 153210in Woodburne, M. O., ed. Cenozoic mammals of North America: geochronology and biostratigraphy. University of California Press, Berkeley.Google Scholar
van der Merwe, N. J., and Medina, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18:249259.CrossRefGoogle Scholar
van Valkenburgh, B. 1995. Tracking ecology over geological time: evolution within guilds of vertebrates. Trends in Ecology and Evolution 10:7175.CrossRefGoogle Scholar
Walker, E. P. 1975. Mammals of the world, 3d ed. Johns Hopkins University Press, Baltimore.Google Scholar
Wilkins, K. T. 1983. Pleistocene mammals from the Rock Springs Local Fauna, central Florida. Brimleyana 9:6982.Google Scholar
Yoshida, N., and Miyazaki, N. 1991. Oxygen isotope correlation of cetacean bone phosphate with environmental water. Journal of Geophysical Research 96(C1):815820.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed