Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T17:44:39.912Z Has data issue: false hasContentIssue false

Disparity and constraint in olenelloid trilobites and the Cambrian Radiation

Published online by Cambridge University Press:  08 February 2016

Loren H. Smith
Affiliation:
Department of Biology, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089. E-mail: lhsmith@rcf.usc.edu
Bruce S. Lieberman
Affiliation:
Department of Geology, University of Kansas, 120 Lindley Hall, Lawrence, Kansas 66045. E-mail: blieber@eagle.cc.ukans.edu

Abstract

The Cambrian Radiation marks the appearance of representatives of virtually all major skeletonized phyla in the fossil record and clearly represents a fundamental episode in the history of life. Furthermore, the tempo and mode of this evolutionary event have been the subject of intense debate. One area that has been debated is how so many phylum-level body plans can have evolved in such a geologically brief period. Some have argued that there was enhanced morphological flexibility and fewer evolutionary constraints at this time, leading to greater morphological disparity of Early Cambrian faunas. Others have claimed that this is not true because the evolution of most of the animal phyla significantly predates the radiation or because they failed to detect a signature of decreasing morphological disparity through time. At present, the higher-level patterns of diversification during this time period and the relevant implications for Early Cambrian uniqueness are areas of active research interest and debate. Recognizing this debate, we used both a phylogenetic and a morphometric framework to study whether there is a signature of increasing morphological constraint and decreasing flexibility through time within one of the clades that is a significant constituent of the Early Cambrian biota, specifically, the olenelloid trilobites. In this species-rich clade, we found no evidence that morphological changes were becoming either increasingly constrained or less flexible in one of the dominant Early Cambrian metazoan clades as it passed through the Cambrian Radiation.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahlberg, P. 1991. Trilobites in the Lower Cambrian of Scandinavia. Geologiska Föreningens i Stockholm Forhandlingar 113:7475.CrossRefGoogle Scholar
Ahlberg, P., Bergström, J., and Johansson, J. 1986. Lower Cambrian olenellid trilobites from the Baltic Faunal Province. Geologiska Föreningens i Stockholm Forhandlingar 108:3956.CrossRefGoogle Scholar
Alroy, J. 1994. Four permutation tests for the presence of phylogenetic structure. Systematic Biology 43:430437.CrossRefGoogle Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences USA 95:606611.CrossRefGoogle ScholarPubMed
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bottjer, D. J., Schubert, J. K., and Droser, M. L. 1996. Comparative evolutionary palaeoecology: assessing the changing ecology of the past. Pp. 113in Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of Special Publication 102, London.CrossRefGoogle Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science 261:12931298.CrossRefGoogle ScholarPubMed
Brasier, M. D., Shields, G., Kuleshov, V. N., and Zhegallo, E. A. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–Early Cambrian of southwest Mongolia. Geological Magazine 133:445485.CrossRefGoogle Scholar
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241243.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Cheetham, A. H., and Jackson, J. B. C. 1995. Process from pattern: tests for selection versus random change in punctuated bryozoan speciation. Pp. 184207in Erwin, and Anstey, 1995.Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature 361:219225.CrossRefGoogle Scholar
Conway Morris, S., and Peel, J. S. 1990. Articulated halkeriids from the Lower Cambrian of north Greenland. Nature 345:802805.CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.2.3.CO;2>CrossRefGoogle Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bulletin of the Carnegie Museum of Natural History 13:719.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Engelmann, G. F., and Wiley, E. O. 1977. The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology 26:111.CrossRefGoogle Scholar
Erwin, D. H. 1993. The origin of metazoan development: a palaeobiological perspective. Biological Journal of the Linnean Society 50:255274.CrossRefGoogle Scholar
Erwin, D. H., and Anstey, R. L., eds. 1995. New approaches for studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Erwin, D. H., and Valentine, J. W. 1984. “Hopeful monsters,” transposons and metazoan radiation. Proceedings of the National Academy of Sciences USA 81:54825483.CrossRefGoogle ScholarPubMed
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:11771186.CrossRefGoogle ScholarPubMed
Erwin, D. H., Valentine, J. W., and Jablonski, D. 1997. The origin of animal body plans. American Scientist 85:126137.Google Scholar
Fisher, D. C., 1991. Phylogenetic analysis and its implications in evolutionary paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleobiology 4:103122. Palaeontological Society, Knoxville, Tenn.Google Scholar
Fisher, D. C., 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. Pp. 133171in Grande, L. and Rieppel, O., eds. Interpreting the hierarchy of nature—from systematic patterns to evolutionary process theories. Academic Press, Orlando, Fla.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.CrossRefGoogle Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.CrossRefGoogle Scholar
Foote, M. 1991a. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1991b. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.CrossRefGoogle Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.CrossRefGoogle Scholar
Foote, M. 1996a. Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science 274:14921495.CrossRefGoogle ScholarPubMed
Foote, M. 1996b. Models of morphological diversification. Pp. 6286in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.CrossRefGoogle Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.Google Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis. Why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Huey, R. B., and Bennett, A. F. 1987. Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:10981115.CrossRefGoogle ScholarPubMed
Hughes, N. C. 1991. Morphological plasticity and genetic flexibility in a Cambrian trilobite. Geology 19:913916.2.3.CO;2>CrossRefGoogle Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology 79:189.CrossRefGoogle Scholar
Hughes, N. C., and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite paleobiology. Lethaia 28:333353.CrossRefGoogle Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., and Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology 22:496498.2.3.CO;2>CrossRefGoogle Scholar
Kaufman, A. J., Knoll, A. H., Semikhatov, M. A., Grotzinger, J. P., Jacobsen, S. B., and Adams, W. 1996. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia. Geological Magazine 133:509533.CrossRefGoogle ScholarPubMed
Kirschvink, J. L., Margaritz, M., Ripperdan, R. L., and Zhuralev, A. Y. 1991. The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1:7091.Google Scholar
Knoll, A. H. 1996. Daughter of time. Paleobiology 22:17.CrossRefGoogle ScholarPubMed
Landing, E., Bowring, S. A., Davidek, K., Westrop, S. R., Geyer, G., and Heldmaier, W. 1998. U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences 35:329338.CrossRefGoogle Scholar
Lieberman, B. S. 1998a. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology 72:5978.CrossRefGoogle Scholar
Lieberman, B. S. 1998b. A probabilistic analysis of rates of evolution during the Cambrian radiation. Geological Society of America Abstracts with Programs 30:A233.Google Scholar
Lieberman, B. S. 1999. Systematic revision of the Olenelloidea and patterns of evolution in trilobites during the Cambrian radiation. Bulletin of the Yale Peabody Museum of Natural History (in press).Google Scholar
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.CrossRefGoogle Scholar
Maddison, W. P., and Maddison, D. R. 1992. MacClade. Analysis of phylogeny and character evolution. Sinauer, Sunderland, Mass.Google Scholar
Marshall, C. R. 1995. Stratigraphy, the true order of species' originations and extinctions, and testing ancestor-descendant hypotheses among Caribbean bryozoans. Pp. 208236in Erwin, and Anstey, 1995.Google Scholar
Martins, E. P., and Hansen, T. F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149:646667.CrossRefGoogle Scholar
McNamara, K. J., 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biological Reviews 61:121156.CrossRefGoogle Scholar
Paul, C. R. C. 1992. The recognition of ancestors. Historical Biology 5:239250.CrossRefGoogle Scholar
Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223225.CrossRefGoogle ScholarPubMed
Rohlf, F. J., and Marcus, L. F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8:129132.CrossRefGoogle Scholar
Rohlf, F. J., and Slice, D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:4059.CrossRefGoogle Scholar
Rohlf, F. J., Loy, A., and Corti, M. 1996. Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warp scores. Systematic Biology 45:344362.CrossRefGoogle Scholar
Rozanov, A. Y. 1992. Some problems concerning the Precambrian–Cambrian transition and the Cambrian faunal radiation. Journal of the Geological Society, London 149:593598.CrossRefGoogle Scholar
Schluter, D., Price, T., Mooers, A. Ø., and Ludwig, D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51:16991711.CrossRefGoogle ScholarPubMed
Sessions, S. K., and Larson, A. 1987. Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41:12391251.CrossRefGoogle ScholarPubMed
Smith, A. B. 1994. Systematics and the fossil record. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Smith, L. H. 1993. Ontogenetic variation in Cambrian through Ordovician trilobites. Geological Society of America Abstracts with Programs 25:A103.Google Scholar
Smith, L. H. 1998a. Species level phenotypic variation in lower Paleozoic trilobites. Paleobiology 24:1736.CrossRefGoogle Scholar
Smith, L. H. 1998b. Asymmetry of early Paleozoic trilobites. Lethaia 31:99112.CrossRefGoogle Scholar
Smith, L. H., and Bunje, P. M. 1999. Morphometric analysis of inarticulate brachiopods through the Phanerozoic. Paleobiology 25:396408.Google Scholar
Sober, E. 1988. Reconstructing the past. MIT Press, Cambridge.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d ed.W. H. Freeman, New York.Google Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences USA 72:646650.CrossRefGoogle ScholarPubMed
Sundberg, F. A. 1996. Morphological diversification of Ptychopariida (Trilobita) from the Marjumiid biomere (Middle and Upper Cambrian). Paleobiology 22:4965.CrossRefGoogle Scholar
Swiderski, D. L. 1993. Morphological evolution of the scapula in tree squirrels, chipmunks, and ground squirrels (Sciuridae): an analysis using thin-plate splines. Evolution 47:18541873.CrossRefGoogle ScholarPubMed
Swofford, D. L., and Maddison, W. P. 1987. Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 87:199229.CrossRefGoogle Scholar
Valentine, J. W., Collins, A. G., and Meyer, C. P. 1994. Morphological complexity increase in metazoans. Paleobiology 20:131142.CrossRefGoogle Scholar
Vidal, G., and Moczydlowska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology 23:230246.CrossRefGoogle Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:6184.Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115150.CrossRefGoogle Scholar
Wagner, P. J., and Erwin, D. H. 1995. Phylogenetic patterns as tests of speciation models. Pp. 87122in Erwin, and Anstey, 1995.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.CrossRefGoogle Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science 274:568573.CrossRefGoogle Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 351:553558.CrossRefGoogle Scholar