Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T17:31:12.246Z Has data issue: false hasContentIssue false

Diversity dynamics of mammals in relation to tectonic and climatic history: comparison of three Neogene records from North America

Published online by Cambridge University Press:  16 April 2013

Catherine Badgley
Affiliation:
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. E-mail: cbadgley@umich.edu
John A. Finarelli
Affiliation:
School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland. E-mail: john.finarelli@ucd.ie

Abstract

In modern ecosystems, regions of topographic heterogeneity, when compared with nearby topographically homogeneous regions, support high species densities of mammals and other groups. This biogeographic pattern could be explained by either greater diversification rates or greater accommodation of species in topographically complex regions. In this context, we assess the hypothesis that changes in landscape history have stimulated diversification in mammals. Landscape history includes tectonic and climatic processes that influence topographic complexity at regional scales. We evaluated the influence of changes in topographic complexity and climate on origination and extinction rates of rodents, the most diverse clade of mammals.

We compared the Neogene records of rodent diversity for three regions in North America. The Columbia Basin of the Pacific Northwest (Region 1) and the northern Rocky Mountains (Region 2) were tectonically active over much of the Cenozoic and are characterized by high topographic complexity today. The northern Great Plains (Region 3) have been tectonically quiescent, with low relief, throughout the Cenozoic. These three regions have distinctive geologic histories and substantial fossil records. All three regions showed significant changes in diversification and faunal composition over the Neogene. In the montane regions, originations and extinctions peaked at the onset and close, respectively, of the Miocene Climatic Optimum (17–14 Ma), with significant changes in faunal composition accompanying these episodes of diversification. In the Great Plains, rodents showed considerable turnover but infrequent diversification. Peak Neogene diversity in the Great Plains occurred during cooling after the Miocene Climatic Optimum. These histories suggest that climatic changes interacting with increasing topographic complexity intensify macroevolutionary processes. In addition, close tracking of diversity and fossil productivity with the stratigraphic record suggests either large-scale sampling biases or the mutual response of diversity and depositional processes to changes in landscape history.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2010a. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.CrossRefGoogle Scholar
Alroy, J. 2010 bThe shifting balance of diversity among major marine animal groups. Science 329:11911194.CrossRefGoogle ScholarPubMed
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259288.CrossRefGoogle Scholar
Badgley, C. 2010. Tectonics, topography, and mammalian diversity. Ecography 33:220231.CrossRefGoogle Scholar
Badgley, C., and Fox, D. L. 2000. Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography 27:14371467.CrossRefGoogle Scholar
Badgley, C., and Gingerich, P. D. 1988. Sampling and faunal turnover in early Eocene mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 63:141157.CrossRefGoogle Scholar
Barnosky, A. D. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172185.CrossRefGoogle Scholar
Barnosky, A. D., and Carrasco, M. A. 2002. Effects of Oligo-Miocene global climate changes on mammalian species richness in the northwestern quarter of the USA. Evolutionary Ecology Research 4:811841.Google Scholar
Barnosky, A. D., Bibi, F., Hopkins, S. B., and Nichols, R. 2007. Biostratigraphy and magnetostratigraphy of the mid-Miocene Railroad Canyon Sequence, Montana and Idaho, and age of the mid-Tertiary unconformity west of the continental divide. Journal of Vertebrate Paleontology 27:204224.CrossRefGoogle Scholar
Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D. 2005. Miocene mammal mapping project (MIOMAP). University of California Museum of Paleontology, http://www.ucmp.berkeley.edu/miomap/.Google Scholar
Christiansen, R. L., and Yeats, R. S. 1992. Post-Laramide geology of the U.S. Cordilleran region. InBurchfiel, B. C., Lipman, P. W., and Zoback, M. L., eds. The Cordilleran Orogen: conterminous U.S. Geology of North America, Vol. G-3:261–406. Geological Society of America, Boulder, Colo.Google Scholar
Clarke, K. R. 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
Coblentz, D. D., and Riitters, K. H. 2004. Topographic controls on the regional-scale biodiversity of the south-western USA. Journal of Biogeography 31:11251138.CrossRefGoogle Scholar
Cracraft, J. 1985. Biological diversification and its causes. Annals of the Missouri Botanical Garden 72:794822.CrossRefGoogle Scholar
Crame, J. A. 2001. Taxonomic diversity gradients through geological time. Diversity and Distributions 7:175189.CrossRefGoogle Scholar
Davis, O. K., and Ellis, B. 2010. Early occurrence of sagebrush steppe, Miocene (12 Ma) on the Snake River Plain. Review of Palaeobotany and Palynology 160:172180.CrossRefGoogle Scholar
Edwards, A. W. F. 1992. Likelihood, expanded ed. Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Elliott, W. S. Jr., Douglas, B. J., and Suttner, L. J. 2003. Structural control on Quaternary and Tertiary sedimentation in the Harrison Basin, Madison County, Montana. Mountain Geologist 40:118.Google Scholar
Fields, R. W., Rasmussen, D. L., Tabrum, A. R., and Nichols, R. 1985. Cenozoic rocks of the intermontane basins of western Montana and eastern Idaho. Pp. 930inFlores, R. M. and Kaplan, S. S., eds. Cenozoic paleogeography of the west-central United States. Society of Economic Paleontologists and Mineralogists, Denver.Google Scholar
Figueirido, B., Janis, C. M., Pérez-Claros, J. A., De Renzi, M., and Palmqvist, P. 2012. Cenozoic climate change influences mammalian evolutionary dynamics. Proceedings of the National Academy of Sciences USA 109:722727.CrossRefGoogle ScholarPubMed
Finarelli, J. A. 2007. Mechanisms behind active trends in body size evolution in the Canidae (Carnivora: Mammalia). American Naturalist 170:876885.CrossRefGoogle ScholarPubMed
Finarelli, J. A., and Badgley, C. 2010. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proceedings of the Royal Society of London B 277:27212726.Google Scholar
Flynn, L. J. 2008. Eomyidae. Pp. 415427in Janis et al. 2008.CrossRefGoogle Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: general problems. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Suppl. to No. 4):74102.Google Scholar
Foote, M. 2000b. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26:578605.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.CrossRefGoogle Scholar
Fox, D. L., and Koch, P. L. 2003. Tertiary history of C4 biomass in the Great Plains, USA. Geology 31:809812.CrossRefGoogle Scholar
Fox, D. L., Honey, J. G., Martin, R. A., and Peláez-Campomanes, P. 2012. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: carbon isotopes and the evolution of C4-dominated grasslands. Geological Society of America Bulletin 124:444462.CrossRefGoogle Scholar
Goodwin, H. T. 2008. Sciuridae. Pp. 355376in Janis et al. 2008.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. A. 2004. A geological timescale 2004. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Graham, R. W., and Lundelius, E. L. Jr. 2010. FAUNMAP II: new data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. http://www.ucmp.berkeley.edu/faunmap/.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4 (1):9pp.Google Scholar
Hanneman, D. L., and Wideman, C. J. 1991. Sequence stratigraphy of Cenozoic continental rocks, southwestern Montana. Geological Society of America Bulletin 103:13351345.2.3.CO;2>CrossRefGoogle Scholar
Hanneman, D. L., and Wideman, C. J. 2006. Calcic pedocomplexes—regional sequence boundary indicators in Tertiary deposits of the Great Plains and western United States. InAlonso-Zarza, A. M. and Tanner, L. H., eds. Paleoenvironmental record and applications of calcretes and palustrine carbonates. Geological Society of America Special Paper 416:115.Google Scholar
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., Porter, E. E., and Turner, J. R. G. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:31053117.CrossRefGoogle Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.CrossRefGoogle Scholar
Hooper, P. R., Binger, G. B., and Lees, K. R. 2002. Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon. Geological Society of America Bulletin 114:4350.2.0.CO;2>CrossRefGoogle Scholar
Hopkins, S. S. B. 2007. Causes of lineage decline in the Aplodontidae: testing for the influence of physical and biological change. Palaeogeography, Palaeoclimatology, Palaeoecology 246:331353.CrossRefGoogle Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences USA 7:78997904.CrossRefGoogle Scholar
Janis, C. M., Gunnell, G. G., and Uhen, M. D., eds. 2008. Evolution of Tertiary mammals of North America, Vol. 2. Small mammals, xenarthrans, and marine mammals. Cambridge University Press, Cambridge.Google Scholar
Kohn, M. J., and Fremd, T. J. 2008. Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36:783786.CrossRefGoogle Scholar
Kohn, M. J., Miselis, J. L., and Fremd, T. J. 2002. Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth and Planetary Science Letters 204:151165.CrossRefGoogle Scholar
Korth, W.W. 2000. Review of Miocene (Hemingfordian to Clarendonian) mylagaulid rodents (Mammalia) from Nebraska. Annals of Carnegie Museum 69:227280.CrossRefGoogle Scholar
Legendre, P., and Legendre, L. 1988. Numerical ecology, 2nd ed. Elsevier Science, Amsterdam.Google Scholar
Leopold, E. B., and Denton, M. F. 1987. Comparative age of grassland and steppe east and west of the northern Rocky Mountains. Annals of the Missouri Botanical Gardens 74:841867.CrossRefGoogle Scholar
Lindsay, E. H. 2008. Cricetidae. Pp. 456479in Janis et al. 2008.CrossRefGoogle Scholar
Martin, R. A. 2008. Arvicolidae. Pp. 480497in Janis et al. 2008.CrossRefGoogle Scholar
Martin, R. A., Peláez-Campomanes, P., Honey, J. G., Fox, D. L., Zakrzewski, R. J., Albright, L. B., Lindsay, E. H., Opdyke, N. D., and Goodwin, H. T. 2008. Rodent community change at the Pliocene-Pleistocene transition in southwestern Kansas and identification of the Microtus immigration event on the Central Great Plains. Palaeogeography, Palaeoclimatology, Palaeoecology 267:196207.CrossRefGoogle Scholar
McMillan, M. E., Angevine, C. L., and Heller, P. L. 2002. Postdepositional tilt of the Miocene-Pliocene Ogallala Group on the western Great Plains: evidence of late Cenozoic uplift of the Rocky Mountains. Geology 30:6366.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, S. G., and Montgomery, D. R. 2006. Polygenetic topography of the Cascade Range, Washington State, USA. American Journal of Science 306:736768.CrossRefGoogle Scholar
Molnar, P., and England, P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346:2934.CrossRefGoogle Scholar
Orr, E. L., and Orr, W. W. 2009. Oregon fossils. Oregon State University Press, Corvallis.CrossRefGoogle Scholar
Passey, B. H., Cerling, T. E., Perkins, M. E., Voorhies, M. R., Harris, J. M., and Tucker, S. T. 2002. Environmental change in the Great Plains: an isotopic record from fossil horses. Journal of Geology 110:123140.CrossRefGoogle Scholar
Peters, S. E. 2006a. Genus extinction, origination, and the duration of sedimentary hiatuses. Paleobiology 32:387407.CrossRefGoogle Scholar
Peters, S. E. 2006b. Macrostratigraphy of North America. Journal of Geology 114:391412.CrossRefGoogle Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.CrossRefGoogle ScholarPubMed
Peters, S. E., and Heim, N. A. 2011. Macrostratigraphy and macroevolution in marine environments: testing the common-cause hypothesis. InMcGowan, A. J. and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication 358:95104.CrossRefGoogle Scholar
Pierce, K. L., and Morgan, L. A. 1992. The track of the Yellowstone hotspot: volcanism, faulting, and uplift. Geological Society of America Memoir 179:153.CrossRefGoogle Scholar
Potter, P. E., and Szatmari, P. 2009. Global Miocene tectonics and the modern world. Earth-Science Reviews 96:279295.CrossRefGoogle Scholar
Poulsen, C. J., and Jeffery, M. L. 2011. Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens. Geology 39:595598.CrossRefGoogle Scholar
Pound, M. J., Haywood, A. M., Salzmann, U., and Riding, J. B. 2012. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Science Reviews 112:122.CrossRefGoogle Scholar
Qian, H., Badgley, C., and Fox, D. L. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111122.CrossRefGoogle Scholar
Reiners, P. W., Ehlers, T. A., Garver, J. I., Mitchell, S. G., Montgomery, D. R., Vance, J. A., and Nicolescu, S. 2002. Late Miocene exhumation and uplift of the Washington Cascade Range. Geology 30:767770.2.0.CO;2>CrossRefGoogle Scholar
Rose, P. J., Fox, D. L., Marcot, J., and Badgley, C. 2011. Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity. Geology 39:163166.CrossRefGoogle Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Simpson, G. G. 1964. Species density of North America mammals. Systematic Zoology 13:5773.CrossRefGoogle Scholar
Smith, G. A., Campbell, N. P., Deacon, M. W., and Shafiqullah, M. 1988. Eruptive style and location of volcanic centers in the Miocene Washington Cascade Range: reconstruction from the sedimentary record. Geology 15:337340.2.3.CO;2>CrossRefGoogle Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 2nd ed. Freeman, W. H., New York.Google Scholar
Swinehart, J. B., Souders, V. L., DeGraw, H. M., and Diffendal, R. F. Jr. 1985. Cenozoic paleogeography of western Nebraska. Pp. 209229inFlores, R. M. and Kaplan, S. S., eds. Cenozoic paleogeography of the west-central United States. Society of Economic Paleontologists and Mineralogists, Denver.Google Scholar
Takeuchi, A., and Larson, P. B. 2005. Oxygen isotope evidence for the late Cenozoic development of an orographic rain shadow in eastern Washington, USA. Geology 33:313316.CrossRefGoogle Scholar
Tedford, R. H., Albright, L. B. III, Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. R. Jr., Storer, J. E., Swisher, C. C. III, Voorhies, M. R., Webb, S. D., and Whistler, D. P. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (Late Oligocene through Early Pliocene epochs). Pp. 169231inWoodburne, M. O., ed. Late Cretaceous and Cenozoic mammals of North America. Columbia University Press, New York.CrossRefGoogle Scholar
Thompson, G. R., Fields, R. W., and Alt, D. 1982. Land-based evidence for Tertiary climatic variations: northern Rockies. Geology 10:413417.2.0.CO;2>CrossRefGoogle Scholar
van Dam, J. A., Aziz, H. A., Alvarez Sierra, M. A., Hilgen, F. J., van den Hoek Ostende, L. W., Lourens, L. J., Mein, P., van der Meulen, A. J., and Peláez-Campomanes, P. 2006. Long-period astronomical forcing of mammal turnover. Nature 443:687691.CrossRefGoogle ScholarPubMed
Verts, B. J., and Carraway, L. N. 1998. Land mammals of Oregon. University of California Press, Berkeley.Google Scholar
Webb, S. D., and Opdyke, N. D. 1995. Global climatic influence on Cenozoic land mammal faunas. Pp. 184208inNational Research Council Panel on Effects of Past Global Change on Life, eds.Effects of past global change on life. National Academies Press, Washington, D.C.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed
Zachos, J., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.CrossRefGoogle ScholarPubMed