Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T17:57:20.233Z Has data issue: false hasContentIssue false

Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction

Published online by Cambridge University Press:  08 April 2016

Jonathan L. Payne
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305. E-mail: jlpayne@stanford.edu
Mindi Summers
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
Brianna L. Rego
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
Demir Altiner
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara 06531, Turkey
Jiayong Wei
Affiliation:
Guizhou Geological Survey, Bagongli, Guiyang 550011, Guizhou Province, China
Meiyi Yu
Affiliation:
College of Resource and Environment Engineering, Guizhou University, Caijiaguan, Guiyang 550003, Guizhou Province, China
Daniel J. Lehrmann
Affiliation:
Department of Geology, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, Wisconsin 54901

Abstract

Delayed biotic recovery from the end-Permian mass extinction has long been interpreted to result from environmental inhibition. Recently, evidence of more rapid recovery has begun to emerge, suggesting the role of environmental inhibition was previously overestimated. However, there have been few high-resolution taxonomic and ecological studies spanning the full Early and Middle Triassic recovery interval, leaving the precise pattern of recovery and underlying mechanisms poorly constrained. In this study, we document Early and Middle Triassic trends in taxonomic diversity, assemblage evenness, and size distribution of benthic foraminifers on an exceptionally exposed carbonate platform in south China. We observe gradual increases in all metrics through Early Triassic and earliest Middle Triassic time, with stable values reached early in the Anisian. There is little support in our data set for a substantial Early Triassic lag interval during the recovery of foraminifers or for a stepwise recovery pattern. The recovery pattern of foraminifers on the GBG corresponds well with available global data for this taxon and appears to parallel that of many benthic invertebrate clades. Early Triassic diversity increase in foraminifers was more gradual than in ammonoids and conodonts. However, foraminifers continued to increase in diversity, size, and evenness into Middle Triassic time, whereas diversity of ammonoids and conodonts declined. These contrasts suggest decoupling of recovery between benthic and pelagic environments; it is unclear whether these discrepancies reflect inherent contrasts in their evolutionary dynamics or the differential impact of Early Triassic ocean anoxia or associated environmental parameters on benthic ecosystems.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adachi, N., Ezaki, Y., and Liu, J. B. 2004. The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, south China. Sedimentary Geology 164:161178.Google Scholar
Apthorpe, M. 2003. Early to lowermost Middle Triassic Foraminifera from the Locker Shale of Hampton–1 well, Western Australia. Journal of Micropalaeontology 22:127.Google Scholar
Baud, A., Richoz, S., and Pruss, S. B. 2007. Lower Triassic anachronistic carbonate facies in space and time. Global and Planetary Change 55:8189.Google Scholar
Beatty, T. W., Zonneveld, J.-P., and Henderson, C. M. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology 36:771774.Google Scholar
Beauchamp, B., and Baud, A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 184:3763.Google Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Bruhwiler, T., Goudemand, N., Galfetti, T., and Guex, J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:11181121.Google Scholar
Brayard, A., Nutzel, A., Stephen, D. A., Bylund, K. G., Jenks, J., and Bucher, H. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology 38:147150.Google Scholar
Canfield, D. E., and Farquhar, J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences USA 106:81238127.Google Scholar
Chen, Z.-Q., Kaiho, K., and George, A. D. 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeography, Palaeoclimatology, Palaeoecology 224:270290.Google Scholar
Crasquin-Soleau, S., Galfetti, T., Bucher, H., Kershaw, S., and Feng, Q. 2007. Ostracod recovery in the aftermath of the Permian-Triassic crisis: Palaeozoic-Mesozoic turnover. Hydrobiologia 585:1327.Google Scholar
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.Google Scholar
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.Google Scholar
Erwin, D. H. 2007. Increasing returns, ecological feedback and the Early Triassic recovery. Palaeoworld 16:915.Google Scholar
Ezaki, Y., Liu, J., Nagano, T., and Adachi, N. 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime. Palaios 23:356369.Google Scholar
Flügel, E. 1994. Pangean shelf carbonates: controls and paleoclimatic significance of Permian and Triassic reefs. In Klein, G. D., ed. Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geological Society of America Special Paper 288:247266.Google Scholar
Flügel, E. 2002. Triassic reef patterns. In Kiessling, W., Flügel, E., and Golonka, J., eds. Phanerozoic reef patterns. SEPM Special Publication 72:291–464. Society for Sedimentary Geology, Tulsa, Okla.Google Scholar
Fraiser, M. L., and Bottjer, D. J. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone member. Palaios 19:259275.Google Scholar
Fraiser, M. L. 2005. Restructuring in benthic level-bottom shallow marine communities due to prolonged environmental stress following the end-Permian mass extinction. Comptes Rendus Palevol 4:515523.Google Scholar
Fraiser, M. L. 2007. Elevated atmospheric CO 2 and the delayed biotic recovery from the end-Permian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 252:164175.Google Scholar
Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P. A., Cordey, F., and Kuang, G. 2007a. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters 258:593604.Google Scholar
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J. O. 2007b. Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291294.Google Scholar
Grice, K., Cao, C. Q., Love, G. D., Bottcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y. G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706709.Google Scholar
Groves, J. R., and Altiner, D. 2005. Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction. Comptes Rendus Palevol 4:419432.Google Scholar
Groves, J. R., Altiner, D., and Rettori, R. 2005. Extinction, survival, and recovery of lagenide foraminifers in the Permian-Triassic boundary interval, central Taurides, Turkey. Journal of Paleontology Memoir 62:138.Google Scholar
Groves, J. R., Rettori, R., Payne, J. L., Boyce, M. D., and Altiner, D. 2007. End-Permian mass extinction of lagenide foraminifers in the southern Alps (northern Italy). Journal of Paleontology 81:415434.Google Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end-Paleozoic extinctions? Historical Biology 5:257262.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Hauser, M., Martini, R., Burns, S., Dumitrica, P., Krystyn, L., Matter, A., Peters, T., and Zaninetti, L. 2001. Triassic stratigraphic evolution of the Arabian-Greater India embayment of the southern Tethys margin. Eclogae Geologicae Helvetiae 94:2962.Google Scholar
He, W., Shi, G. R., Feng, Q., Campi, M. J., Gu, S., Bu, J., Peng, Y., and Meng, Y. 2007. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 252:145163.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jacobsen, N. D., Twitchett, R. J., and Krystyn, L. 2010. Palaeoecological methods for assessing marine ecosystem recovery following the Late Permian mass extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology in press.Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.Google Scholar
Kobayashi, F. 1997. Upper Permian foraminifers from the Iwai-Kanyo area, West Tokyo, Japan. Journal of Foraminiferal Research 27:186195.Google Scholar
Kobayashi, F. 2004. Late Permian foraminifers from the limestone block in the southern Chichibu Terrane of West Shikoku, SW Japan. Journal of Paleontology 78:6270.Google Scholar
Kobayashi, F. 2005. Permian foraminifers from the Itsukaichi-Ome area, west of Tokyo, Japan. Journal of Paleontology 79:413432.Google Scholar
Kobayashi, F., Martini, R., and Zaninetti, L. 2005. Anisian foraminifers from allochthonous limestones of the Tanoura formation (Kurosegawa Terrane, West Kyushu, Japan). Geobios 38:751763.Google Scholar
Krull, E. S., Lehrmann, D. J., Druke, D., Kessel, B., Yu, Y. Y., and Li, R. X. 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology 204:297315.Google Scholar
Lehrmann, D. J. 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China. Geology 27:359362.Google Scholar
Lehrmann, D. J., Wei, J. Y., and Enos, P. 1998. Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjiang Basin, south China. Journal of Sedimentary Research 68:311326.Google Scholar
Lehrmann, D. J., Wan, Y., Wei, J. Y., Yu, Y. Y., and Xiao, J. F. 2001. Lower Triassic peritidal cyclic limestone: an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 173:103123.Google Scholar
Lehrmann, D. J., Payne, J. L., Felix, S. V., Dillett, P. M., Wang, H., Yu, Y. Y., and Wei, J. Y. 2003. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18:138152.2.0.CO;2>CrossRefGoogle Scholar
Lehrmann, D. J., Ramezani, J., Martin, M. W., Bowring, S. A., Montgomery, P., Enos, P., Payne, J. L., Orchard, M. J., Wang, H.-M., and Wei, J. 2006. Timing of biotic recovery from the end-Permian extinction: biostratigraphic and geochronologic constraints from south China. Geology 34:10531056.Google Scholar
Lehrmann, D. J., Pei, D., Enos, P., Minzoni, M., Ellwood, B., Orchard, M. J., Zhang, J., Wei, J., Dillett, P., Koenig, J., Steffen, K., Druke, D., Druke, J., Kessel, B., and Newkirk, T. 2007. Impact of differential tectonic subsidence on isolated carbonate-platform evolution: Triassic of the Nanpanjiang Basin, south China. American Association of Petroleum Geologists Bulletin 91:287320.Google Scholar
Leven, E. J., and Okay, A. I. 1996. Foraminifera from the exotic Permo-Carboniferous limestone blocks in the Karakaya Complex, Northwestern Turkey. Rivista Italiana di Paleontologia e Stratigrafia 102:139174.Google Scholar
Marshall, C. R., and Jacobs, D. K. 2009. Flourishing after the end-Permian mass extinction. Science 325:10791080.Google Scholar
Meyer, K. M., Kump, L. R., and Ridgwell, A. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36:747750.Google Scholar
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M., and Payne, J. L. 2011. δ13C evidence that high primary productivity delayed the end-Permian mass extinction. Earth and Planetary Science Letters 302:378384.Google Scholar
Mundil, R., Brack, P., Meier, M., Rieber, H., and Oberli, F. 1996. High resolution U-Pb dating of Middle Triassic volcaniclastics: Time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth and Planetary Science Letters 141:137151.Google Scholar
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305:17601763.Google Scholar
Novack-Gottshall, P. M. 2008. Using simple body size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163173.Google Scholar
Orchard, M. J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology 252:93117.Google Scholar
Ovtcharova, M., Bucher, H., and Schaltegger, U. 2005. Calibration of the early Triassic biotic recovery: New U/Pb zircon ages from South China. Geochimica et Cosmochimica Acta 69:A324A324.Google Scholar
Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., and Guex, J. 2006. New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters 243:463475.Google Scholar
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Orchard, M. J., Schrag, D. P., and Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., and Knoll, A. H. 2006a. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:6385.Google Scholar
Payne, J. L., Lehrmann, D. J., Christensen, S., Wei, J., and Knoll, A. H. 2006b. Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:325343.Google Scholar
Payne, J. L., Lehrmann, D. J., Follett, D., Seibel, M., Kump, L. R., Riccardi, A., Altiner, D., Sano, H., and Wei, J. 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin 119:771784.Google Scholar
Pronina-Nestell, G. P., and Nestell, M. K. 2001. Late Changhsingian foraminifers of the northwestern Caucasus. Micropaleontology 47:205234.Google Scholar
Pruss, S. B., and Bottjer, D. J. 2004. Late Early Triassic microbial reefs of the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 211:127137.Google Scholar
Pruss, S. B., Corsetti, F. A., and Bottjer, D. J. 2005a. Environmental trends of Early Triassic biofabrics: implications for understanding the aftermath of the end-Permian mass extinction. Pp. 313332 in Morrow, J. D., Over, D. J., and Wignall, P. B., eds. Understanding Late Devonian and Permian-Triassic biotic and climatic events: toward an integrated approach. Elsevier, Amsterdam.Google Scholar
Pruss, S. B. 2005b. The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 222:3352.Google Scholar
Pruss, S. B., Bottjer, D. J., Corsetti, F. A., and Baud, A. 2006. A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth-Science Reviews 78:193206.Google Scholar
Retallack, G. J. 1999. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geological Society of America Bulletin 111:5270.Google Scholar
Retallack, G. J., Veevers, J. J., and Morante, R. 1996. Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin 108:195207.Google Scholar
Rettori, R. 1995. Foraminiferi del Trias inferiore e medio della Tetide: Revisione tassonomica, stratigrafia ed interpretazione filogenetica. Publications du départment de géologie et paléontologie: Université de Genève 18:1149.Google Scholar
Rodland, D. L., and Bottjer, D. J. 2001. Biotic recovery from the end-Permian mass extinction: Behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95101.Google Scholar
Salaj, J., Borza, K., and Samuel, O. 1983. Triassic foraminifers of the west Carpathians. Geologický ústav Dionýza Štúra, Bratislava.Google Scholar
Schell, W. W., and Clark, D. L. 1960. Lower Triassic foraminifera from Nevada. Micropaleontology 6:291296.Google Scholar
Schroeder, M. L. 1968. Lower Triassic foraminifera from the Thaynes Formation in southeastern Idaho and western Wyoming. Micropaleontology 14:7382.Google Scholar
Schubert, J. K., and Bottjer, D. J. 1995. Aftermath of the Permian-Triassic mass extinction event—Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:139.Google Scholar
Gupta, B. K. Sen 2002. Modern Foraminifera. Kluwer, Boston.Google Scholar
Sole, R. V., Montoya, J. M., and Erwin, D. H. 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357:697707.Google Scholar
Song, H.-J., Tong, J.-N., Zhang, K.-X., Wang, Q.-X., and Chen, Z. Q. 2007. Foraminiferal survivors from the Permian-Triassic mass extinction in the Meishan section, South China. Palaeoworld 16:105119.Google Scholar
Song, H., Tong, J., Chen, Z. Q., Yang, H. A. O., and Wang, Y. 2009. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, south China. Journal of Paleontology 83:718738.Google Scholar
Stanley, S. M. 2009. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proceedings of the National Academy of Sciences USA 106:1526415267.Google Scholar
Tong, J., Zuo, J., and Chen, Z. Q. 2007. Early Triassic carbon isotope excursions from south China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geological Journal 42:371389.Google Scholar
Twitchett, R. J. 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 154:2737.Google Scholar
Twitchett, R. J. 2001. Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geological Journal 36:341353.Google Scholar
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.Google Scholar
Twitchett, R. J., and Wignall, P. B. 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 124:137151.Google Scholar
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R., and Richoz, S. 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805808.Google Scholar
Unal, E., Altiner, D., Yilmaz, I. O., and Ozkan-Altiner, S. 2003. Cyclic sedimentation across the Permian-Triassic boundary (Central Taurides, Turkey). Rivista Italiana di Paleontologia e Stratigrafia 109:359376.Google Scholar
Vuks, V. J. 2007. Olenekian (Early Triassic) foraminifers of the Gorny Mangyshlak, eastern Precaucasus and western Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology 252:8292.Google Scholar
Wignall, P. B., and Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In Koeberl, C. and MacLeod, K. G., eds. Catastrophic events and mass extinctions; impacts and beyond. Geological Society of America Special Publication 356:395413.Google Scholar
Yang, W., and Lehrmann, D. J. 2003. Milankovitch climatic signals in Lower Triassic (Olenekian) peritidal carbonate successions, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 201:283306.Google Scholar
Zaninetti, L. 1976. Les foraminifères du Trias—essai de synthèse et correlation entre les domaines mésogéens européen et asiatique. Rivista Italiana di Paleontologia 82:1258.Google Scholar