Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T03:01:55.809Z Has data issue: false hasContentIssue false

The early Mesozoic radiation of dinoflagellates

Published online by Cambridge University Press:  08 April 2016

R. A. Fensome
Affiliation:
Geological Survey of Canada, Bedford Institute of Oceanography, Post Office Box 1006, Dartmouth, Nova Scotia, Canada, B2Y 4A2
R. A. MacRae
Affiliation:
Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
J. M. Moldowan
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115
F. J. R. Taylor
Affiliation:
Department of Oceanography, University of British Columbia, Vancouver, British Columbia, Canada, V6T
G. L. Williams
Affiliation:
Geological Survey of Canada, Bedford Institute of Oceanography, Post Office Box 1006, Dartmouth, Nova Scotia, Canada, B2Y 4A2

Abstract

Dinoflagellates are a major component of the marine microplankton and, from fossil evidence, appear to have been so for the past 200 million years. In contrast, the pre-Triassic record contains only equivocal occurrences of dinoflagellates, despite the fact that comparative ultrastructural and molecular phylogenetic evidence indicates a Precambrian origin for the lineage. Thus, it has often been assumed that the dearth of Paleozoic fossil dinoflagellates was due to a lack of preservation or recognition and that the relatively sudden appearance of dinoflagellates in the Mesozoic is an artifact of the record. However, new evidence from a detailed analysis of the fossil record and from the biogeochemical record indicates that dinoflagellates did indeed undergo a major evolutionary radiation in the early Mesozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Below, R. 1987a. Evolution und Systematik von Dinoflagellaten-Zysten aus der Ordnung Peridiniales. I. Allgemeine Grundlagen und Subfamilie Rhaetogonyaulacoideae (Familie Peridiniaceae). Palaeontographica, Abteilung B 205:1164.Google Scholar
Below, R. 1987b. Evolution und Systematik von Dinoflagellaten-Zysten aus der Ordnung Peridiniales. II. Cladopyxiaceae und Valvaeodiniaceae. Palaeontographica, Abteilung B 206:1115.Google Scholar
Bujak, J. P., and Williams, G. L. 1981. The evolution of dinoflagellates. Canadian Journal of Botany 59:20772087.CrossRefGoogle Scholar
Calandra, F. 1964. Micropaléontologie: sur un présumé dinoflagellé Arpylorus nov. gen. du Gothlandien de Tunisie. Compte rendus des séances de l'Académie des sciences, Série D 258:41124114.Google Scholar
Colbath, G. K., and Grenfell, H. R. 1995. Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). Review of Paleobotany and Palynology 86:287314.Google Scholar
Downie, C. 1973. Observations on the nature of acritarchs. Palaeontology 16:239259.Google Scholar
Ehrenberg, C. G. 1838. Über das Massenverhältniss der jetzt lebenden Kiesel-Infusorien und über ein neues Infusorien-Conglomerat als Polierschiefer von Jastraba in Ungarn. Königlich Akademie der Wissenschaften zu Berlin, Abhandlungen, 1836 1:109135.Google Scholar
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.Google Scholar
Evitt, W. R. 1961. Observations on the morphology of fossil dinoflagellates. Micropaleontology 7:385420.Google Scholar
Evitt, W. R. 1981. The difference it makes that dinoflagellates did it differently. International Commission for Palynology News-letter 4, No. 1:67.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A classification of fossil and living dinoflagellates. Micropaleontology Press Special Paper, No. 7.Google Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Head, M. In press. Modern dinoflagellate cysts and their biological affinities. In Jansonius, J. and McGregor, D. C., eds. Palynology: principles and applications. American Association of Stratigraphic Palynologists, Dallas.Google Scholar
Herzog, M., Lenaers, G., Bhaud, Y., Sala-Rovira, M., Saint Hilaire, D., and Soyer-Gobillard, M.-O. 1989. A molecular phylogeny analysis of dinoflagellates inferred from ribosomal RNA sequence comparison. p. 63in Fourth International Conference on Modern and Fossil Dinoflagellates, Woods Hole, April, 1989, Program and Abstracts.Google Scholar
Jansonius, J. 1962. Palynology of Permian and Triassic sediments, Peace River area, western Canada. Palaeontographica, Abteilung B 110:3598.Google Scholar
Lenaers, G., Scholin, C., Bhaud, Y., Saint-Hilaire, D., and Herzog, M. 1991. A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 245 rRNA divergent domains D1 and D8. Journal of Molecular Evolution 32:5363.Google Scholar
Lentin, J. K., and Williams, G. L. 1993. Fossil dinoflagellates: index to genera and species. 1993 edition. American Association of Stratigraphic Palynologists, Contributions Series, No. 28.Google Scholar
Lister, T. R. 1970. The acritarchs and chitinozoa from the Wen-lock and Ludlow Series of the Ludlow and Millichope areas, Shropshire. Palaeontographical Society Monographs 124, No. 1 (Publication 528):1100.Google Scholar
Mantell, G. A. 1845. Notes of a microscopical examination of the chalk and flint of southeast England, with remarks on the animalculites of certain Tertiary and modern deposits. Annals and Magazine of Natural History 16:7388.CrossRefGoogle Scholar
McNally, K. L., Govind, N. S., Thome, P. E., and Trench, R. K. 1994. Small sub-unit ribosomal DNA sequence analyses and a reconstruction of the inferred phylogeny among symbiotic dinoflagellates (Pyrrophyta). Journal of Phycology 30:316329.CrossRefGoogle Scholar
Moldowan, J.M., Dahl, J., Jacobson, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E. 1996. Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24:159162.2.3.CO;2>CrossRefGoogle Scholar
Nicoll, R. S., and Foster, C. B. 1994. Late Triassic conodont and palynomorph biostratigraphy and conodont thermal maturation, North West Shelf, Australia. Journal of Australian Geology and Geophysics 15:101.Google Scholar
Oliver, W. A. Jr. 1980. The relationship of the scleractinian corals to the rugose corals. Paleobiology 6:146160.Google Scholar
Piel, K. M., and Evitt, W. R. 1980. Paratabulation in the Jurassic dinoflagellate genus Nannoceratopsis and a comparison with modern taxa. Palynology 4:79104.CrossRefGoogle Scholar
Stanley, G. D. Jr., and Swart, P. K. 1995. Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179199.CrossRefGoogle Scholar
Summons, R. E., Thomas, J., Maxwell, J. R., and Boreham, C. J. 1992. Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochimica et Cosmochimica Acta 56:24372444.Google Scholar
Tasch, P. 1963. Hystrichosphaerids and dinoflagellates from the Permian of Kansas. Micropaleontology 9:332336.Google Scholar
Taylor, F. J. R. 1994. The role of phenotypic comparisons of living protists in the determination of probable eukaryotic phylogeny. pp. 312326in Bengtson, S., ed. Early life on Earth. Columbia University Press, New York.Google Scholar
Valentine, J. W. 1986. The Permian-Triassic extinction event and invertebrate developmental models. Bulletin of Marine Science 39:607615.Google Scholar
Vozzhennikova, T. F., and Sheshegova, L. I. 1989. Palaeodinophysis gen. et sp. n. iz devona Rudnogo Altaya (unikal'naya nakhodka iskopayemykh dinoflagellyat). Doklady Akademii Nauk SSSR 307, No. 2:442445.Google Scholar
Withers, N. 1987. Dinoflagellate sterols. pp. 316359in Taylor, F. J. R., ed. The biology of dinoflagellates. Blackwell Scientific, Oxford.Google Scholar