Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T23:58:35.783Z Has data issue: false hasContentIssue false

The effect of weathering on bird bone survivorship in modern and fossil saline-alkaline lake environments

Published online by Cambridge University Press:  08 April 2016

Kari Alyssa Prassack*
Affiliation:
Center for Human Evolutionary Studies, Rutgers University, 131 George Street, New Brunswick, New Jersey 08901-1414. E-mail: kalyssa@rci.rutgers.edu

Abstract

A modern Lesser Flamingo (Phoeniconaias minor) assemblage was collected along the shoreline of Lake Emakat, a saline-alkaline lake in northern Tanzania. Taphonomic analysis found the assemblage to be heavily weathered. This is likely due to the bone's heightened exposure to solar radiation and corrosive soil and water chemistries, as is expected to occur in such depositional environments.

Analysis found that deep, wide, longitudinal cracks penetrate the medullar cavities of both weathered and unweathered long bones. The cause and taphonomic consequence of these cracks are addressed here, using data from Lake Emakat and from controlled studies. Results support repeated (episodic) submersion, followed by drying, as the causal mechanism behind these wet-dry cracks. Mineral salt uptake by bone may explain the early appearance and prevalence of these cracks in saline-alkaline lake settings, as compared to other depositional settings.

The rate of weathering and incidence of wet-dry cracking varies significantly across limb elements. This difference correlates to element specific resistance properties to external loading forces. Heavy weathering weakens the structural integrity of bone and can accelerate its fragmentation. This can lead to bird bone loss in nearshore and ephemeral wetland settings, which may then affect resulting skeletal part, diversity, and richness profiles. Heavy weathering can therefore obscure important taphonomic and paleoecological information.

The weathering data collected here are then applied to a fossil bird assemblage from the FLK Complex, (late Pliocene), Olduvai Gorge, in Tanzania. Results provide evidence for the effect of weathering on paleoecological and behavioral interpretations. Weathering should be considered when analyzing fossil bird assemblages.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, P., and Evans, E. M. Nesbit 1983. Small mammal bone accumulations produced by mammalian carnivores. Paleobiology 9:289307.Google Scholar
Audoly, B., and Neukirch, S. 2005. Fragmentation of rods by cascading cracks: why spaghetti does not break in half. Physical Review Letters 95(9):15.Google Scholar
Avery, G., and Underhill, L. G. 1986. Seasonal exploitation of seabirds by late Holocene coastal foragers: analysis of modern and archaeological data from the Western Cape, South Africa. Journal of Archaeological Science 13:339360.Google Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information on bone weathering. Paleobiology 4:150162.Google Scholar
Behrensmeyer, A. K., Stayton, C. T., and Chapman, R. E. 2003. Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology 29:5270.Google Scholar
Bertram, J. E. A., and Biewener, A. A. 1988. Bone curvature: sacrificing strength for load predictability? Journal of Theoretical Biology 131:7592.Google Scholar
Bickart, K. J. 1984. A field experiment in avian taphonomy. Journal of Vertebrate Paleontology 4:525535.Google Scholar
Blumenschine, R. J., and Peters, C. R. 1998. Archaeological predictions for hominid land use during the paleo-Olduvai Basin, Tanzania, during lowermost Bed II times. Journal of Human Evolution 34:565607.Google Scholar
Blumenschine, R. J., Peters, C. R., Masao, F. T., Clarke, R. J., Deino, A. L., Hay, R. L., Swisher, C. C., Stanistreet, I. G., Ashley, G. M., McHenry, L. G., Sikes, N. E., van der Merwe, N. J., Tactikos, J. C., Cushing, A. C., Deocampo, D. M., Njau, J. K., and Ebert, J. I. 2003. Late Pliocene Homo and hominid land use from western Olduvai Gorge, Tanzania. Science 299:12171221.CrossRefGoogle ScholarPubMed
Bochénski, Z. M., and Tomek, T. 1997. Preservation of bird bones: erosion versus digestion by owls. International Journal of Osteoarchaeology 7:72387.Google Scholar
Bochénski, Z. M., Tomek, T., Tornberg, T., and Wertz, K. 2009. Distinguishing nonhuman predation on birds: pattern of damage done by the white-tailed eagle, Haliaetus albicilla, with comments on the punctures made by the golden eagle, Aquila chrysaetos. Journal of Archaeological Science 36:122129.Google Scholar
Bovy, K. M. 2002. Differential avian skeletal part distribution: explaining the abundance of wings. Journal of Archaeological Science 29:965978.Google Scholar
Brodkorb, P. 1985. Preliminary report on Pliocene/Pleistocene birds of East Africa. Pp. 174177in Ilyichev, V. D. and Gavrilov, V. M., eds. Proceedings of the 18th International Ornithological Congress, Moscow.Google Scholar
Brown, L. H. 1955. The breeding behavior of the Lesser Flamingo, Phoeniconaias minor. Ibis 113:147172.CrossRefGoogle Scholar
Broughton, J. M., Mullins, D., and Ekker, T. 2007. Avian resource depression or intertaxonomic variation in bone density? A test with San Francisco Bay avifaunas. Journal of Archaeological Science 34:374391.Google Scholar
Bühler, P. 1992. Light bones in birds. In Campbell, K. Jr., ed. Papers in avian paleontology honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Science Series 36:385393.Google Scholar
Cassoli, P. F., and Tagliacozzo, A. 1997. Butchering and cooking of birds in the Paleolithic site of Grotta Romanelli, (Italy). International Journal of Osteoarchaeology 7:303320.3.0.CO;2-R>CrossRefGoogle Scholar
Chinsamy, A., and Elzanowski, A. 2001. Evolution of growth patterns in birds. Nature 412:403.CrossRefGoogle ScholarPubMed
Cohen, A. A. 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, Oxford.CrossRefGoogle Scholar
Conard, N. J., Walker, S. J., and Kandel, A. W. 2008. How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 266:236245.Google Scholar
Cruz, I. 2007. Avian taphonomy: observations at two Magellanic penguin (Spheniscus magellanicus) breeding colonies and their implications for the fossil record. Journal of Archaeological Science 34:12521261.Google Scholar
Cruz, I. 2008. Avian and mammalian bone taphonomy in southern continental Patagonia: a comparative approach. Quaternary International 180:3037.Google Scholar
Cubo, J., and Casinos, A. 2000. Incidence and mechanical significance of pneumatization in long bones of birds. Zoological Journal of the Linnaean Society 130:499510.Google Scholar
Currey, J. D. 2002. Bones: structure and mechanics. Princeton University Press, Princeton, N.J.Google Scholar
Davis, P. G. 1997. The bioerosion of bird bones. International Journal of Osteoarchaeology 7:388404.Google Scholar
Davis, P. G., and Briggs, D. E. G. 1998. The impact of decay and disarticulation on the preservation of fossil birds. Palaios 13:313.Google Scholar
Dawson, J. B., Pinkerton, H., Norton, G. E., and Pyle, D. M. 1990. Physicochemical properties of alkali carbonatite lavas: data from the 1988 eruption of Ol'Doinyo Lengai, Tanzania. Geology 18:260263.Google Scholar
de Margerie, E. 2002. Laminar bone as an adaptation to torsional loads in flapping flight. Journal of Anatomy 201:521526.Google Scholar
de Margerie, E., Sanchez, S., Cubo, J., and Castanet, J. 2005. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anatomical Record A 282:4966.Google Scholar
Deocampo, D. M. 2005. Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipitation: Lake Eyasi and Ngorongoro Crater, northern Tanzania. South African Journal of Geology 108:493504.Google Scholar
Deocampo, D. M., Blumenschine, R. J., and Ashley, G. M. 2002. Wetland diagenesis and traces of early hominids, Olduvai Gorge, Tanzania. Quaternary Research 57:271281.Google Scholar
de Ricqlès, A., Meunier, F. J., Castanet, J., and Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Pp. 178in Hall, B. K., ed. Bone, Vol. 3. CRC Press, Boca Raton, Fla.Google Scholar
Dirrigl, F. J. 2001. Bone mineral density of wild turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. Journal of Archaeological Science 28:817832.Google Scholar
Dullemeijer, P. 1974. Concepts and approaches in animal morphology. Koniklijke Van Gorcum, The Netherlands.Google Scholar
Dumont, E. R. 2010. Bone density and the lightweight skeleton of birds. Proceedings of the Royal Society of London B 277:21932198.Google Scholar
Eastham, A. 1989. The potential of bird remains for environmental reconstruction. International Journal of Osteoarchaeology 7:422429.Google Scholar
Emslie, S. D., Allmon, W. D., Rich, F. J., Wrenn, J. H., and de France, S. D. S.D. 1996. Integrated taphonomy of an avian death assemblage in marine sediments from the late Pliocene of Florida. Palaeogeography, Palaeoclimatology, Palaeoecology 124:107136.Google Scholar
Ennos, A. R., and van Casteren, A. 2010. Transverse stresses and modes of failure in tree branches and other beams. Proceedings of the Royal Society of London B 277:12531258.Google Scholar
Ericson, P. G. P. 1987. Interpretations of archaeological bird remains: a taphonomic approach. Journal of Archaeological Science 14:6575.Google Scholar
Finlayson, C. M., and Moser, M. 1991. Wetlands. International Waterfowl and Wetlands Research Bureau, Slimbridge, U.K.Google Scholar
Fiore, I., Gala, M., and Tagliacozzo, A. 2004. Ecology and subsistence strategies in the Eastern Italian Alps during the Middle Paleolithic. International Journal of Osteoarchaeology 14:273286.Google Scholar
Frame, G., Frame, L., and Split, J. 1975. An ecological survey and development plan for the Empakaai Crater ecosystem (Ngorongoro Conservation Area). Serengeti Research Contribution 212. Serengeti Research Institute, Tanzania.Google Scholar
Gifford, D. P. 1981. Taphonomy and paleoecology: a critical review of archaeology's sister disciplines. Pp. 365438in Schiffer, P., ed. Advanced archaeological method and theory, Vol. 4. Springer, New York.Google Scholar
Guadelli, J. L., and Ozouf, J. C. 1994. Etudes expérimentales de l'action du gel sur les restes fauniques: premiers résultats. Artifacts 9:4756Google Scholar
Harper, D. M., Childress, R. B., Harper, M. M., Boar, R. R., Hickley, P., Mills, S. C., Otieno, N., Drane, T., Vareschi, E., Nasirwa, O., Mwatha, W. E., Darlington, J. P. E. C., and Escute-Gasulla, X. 2003. Aquatic diversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 500:259276.Google Scholar
Hay, R. L. 1976. Geology of the Olduvai Gorge: a study of sedimentation in a semi arid basin. University of California Press, Berkeley.Google Scholar
Haynes, G. 1991. Mammoths, mastodons, and elephants. Cambridge University Press, Cambridge.Google Scholar
Hedges, R. E. M., and Millard, A. R. 1995. Bones and groundwater: towards the modeling of diagenetic processes. Journal of Archaeological Science 22:155165.Google Scholar
Higgins, J. 1999. Túnel: a case study of avian zooarchaeology and taphonomy. Journal of Archaeological Science 26:14491457.Google Scholar
Hogg, D. A. 1984. The distribution of pneumatisation in the skeleton of the adult domestic fowl. Journal of Anatomy 138:617629.Google Scholar
Hopley, P. J., and Maslin, M. A. 2010. Climate-averaging of terrestrial faunas: an example from the Plio-Pleistocene of South Africa. Paleobiology 36:3250.Google Scholar
Howard, H. 1946. Pleistocene birds of Fossil Lake, Oregon. Carnegie Institution of Washington Publication 551:141195.Google Scholar
Jehl, J. R. Jr. 1988. The beached-bird assemblage of a highly saline lake and its relevance for reconstructing paleoenvironments. Auk 105:97101.Google Scholar
Jones, B. F., Eugster, H. P., and Rettig, S. L. 1977. Hydrochemistry of the Lake Magadi Basin, Kenya. Geochimica et Cosmochimica Acta 41:5372.Google Scholar
Kidwell, S. M., Fürsich, F. T., and Aigner, T. 1986. Conceptual framework for the analysis and classification of fossil concentrations. Paleobiology 1:228238.Google Scholar
Koenig, R. 2006. The pink death: die-offs of the Lesser Flamingo raise concern. Science 313:17241725.Google Scholar
Leakey, L. S. B. 1959. A new fossil skull from Olduvai. Nature 184:491493.Google Scholar
Leakey, M. D. 1971. Olduvai Gorge, Vol. 3. Cambridge University Press, Cambridge.Google Scholar
Livingston, S. D. 1989. The taphonomic interpretation of avian skeletal part frequencies. Journal of Archaeological Science 16:537547.Google Scholar
Louchart, A., Wesselman, H., Blumenschine, R. J., Hlusko, L. J., Njau, J. K., Asnake, M., and White, T. 2009. Taphonomic, avian, and small-vertebrate indicators of Ardipithecus ramidus habitat. Science 326:66e166e4.Google Scholar
Lyman, R. L. 1984. Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology 3:259299.CrossRefGoogle Scholar
Lyman, R. L., and Fox, G. L. 1989. A critical evaluation of bone weathering as an indication of bone assemblage formation. Journal of Archaeological Science 16:293317.Google Scholar
Mannermaa, K., and Stora, J. 2006. Stone-age exploitation of birds on the island of Gotland, Baltic Sea: a taphonomic study of the avifauna of the Neolithic site of Ajvide. International Journal of Osteoarchaeology 16:429452.Google Scholar
Mayr, G. 2005. The Paleogene fossil record of birds in Europe. Biological Review 80:515532.Google Scholar
McPhaden, M. J. 1999. Genesis and evolution of the 1997–1998 E1 Nino. Science 283:950954.Google Scholar
Mehlman, M. J. 1987. Provenience, age and associations of archaic Homo sapiens crania from Lake Eyasi, Tanzania. Journal of Archaeological Science 14:133162.Google Scholar
Miller, A. H. 1937. Biotic associations and life-zones in relation to the Pleistocene birds of California. Condor 39:248252.Google Scholar
Miller, G. L. 1975. A study of cuts, groves, and other marks on recent fossil bone. II. Weathering cracks, fractures, splinters, and other similar natural phenomena. Pp. 211221in Swanson, E., ed. Lithic technology: making and using tools. Mouton, The Hague.Google Scholar
Motelin, G., Thampy, R., and Doros, D. 2000. An exotoxological study of the potential role of metals, pesticides and algal toxins on the 1993–1995 Lesser Flamingo mass die offs in Lake Bogoria and Nakuru, Kenya; and the health status of the same species of birds in the Rift Valley Lakes during the 1990s. Proceedings of the East African Environmental Forum, Nairobi, Kenya, May 2000. East African Environmental Network, Nairobi.Google Scholar
Muzuka, A. N., Ryner, M., and Holmgren, K. 2004. 12,000-Year, preliminary results of the stable nitrogen and carbon isotope record from the Empakai Crater lake sediments, Northern Tanzania. Journal of African Earth Sciences 40:293303.Google Scholar
Myers, T. P., Voorhies, M. R., and Corner, R. G. 1980. Spiral fractures and bone pseudotools at paleontological sites. American Antiquity 45:483490.Google Scholar
Nielsen-Marsh, C. M., Smith, C. I., Jans, M. M. E., Kars, H., and Collins, M. J. 2007. Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. Journal of Archaeological Science 34:15231531.Google Scholar
Njau, J. K., and Blumenschine, R. J. 2006. A diagnosis of crocodile feeding traces on large mammal bone with fossil examples from Plio-Pleistocene Olduvai Gorge, Tanzania. Journal of Human Evolution 50:142162.Google Scholar
Oliver, J. S., and Graham, R. W. 1994. A catastrophic kill of ice trapped coots: time-averaged versus scavenger specific disarticulation patterns. Paleobiology 20:229244.Google Scholar
Olson, S. T., and Feduccia, A. 1980. Relationships and evolution of flamingos (Aves: Phoenicopteridae). Smithsonian Contributions to Zoology 316:185Google Scholar
Owino, A. O., Oyugai, J. O., Nasirwa, O. O., and Bennun, L. A. 2001. Patterns of variation in waterbird numbers on four Rift Valley lakes in Kenya, 1991–1999. Hydrobiologia 458:4553.Google Scholar
Pennycuick, C. J. 1967. The strength of the pigeon's wing bones in relation to their function. Journal of Experimental Biology 46:219233.Google Scholar
Prassack, K. A. 2010. Late Pliocene avifauna from the hominid-bearing Zinjanthropus land surface at Olduvai Gorge, Tanzania. In Boles, W. E. and Worthy, T. H., eds. Proceedings of the VII International Meeting of the Society of Avian Paleontology and Evolution. Records of the Australian Museum 62:185192.Google Scholar
Rasmussen, D. T., Olson, S. L., and Simons, E. L. 1987. Fossil birds from the Oligocene Jebel Qatrani Formation, Fayum Province, Egypt. Smithsonian Contributions to Paleobiology 62:120.Google Scholar
Rich, P. V., and Walker, C. A. 1983. A new Miocene flamingo from East Africa. Ostrich 54:95104.Google Scholar
Ryner, M., Gasse, F., Rumes, B., and Verschuren, D. 2007. Climatic and hydrological instability in semi-arid equatorial East Africa during the late Glacial to Holocene transition: a multi-proxy reconstruction of aquatic ecosystem response in northern Tanzania. Paleogeography, Paleoclimatology, Paleoecology 248:440458.Google Scholar
Schufeldt, R. W. 1902. Osteology of the flamingos. Annals of the Carnegie Museum 1:295324.Google Scholar
Simmons, T., and Nadel, D. 1998. The avifauna of the Early Epipaleolithic site of Ohalo II (19,400 years BP), Israel: species diversity, habitat and seasonality. International Journal of Osteoarchaeology 8:7996.Google Scholar
Steadman, D. W., Plourde, A., and Burley, D. V. 2002. Prehistoric butchery and consumption of birds in the Kingdom of Tonga. South Pacific Journal of Archaeological Science 29:571584.Google Scholar
Stewart, J. R., and Carrasquilla, F. Hernandez 1997. The identification of extant European bird remains: a review of the literature. International Journal of Osteoarchaeology 7:364371.Google Scholar
Swartz, S. M., Bennet, M. B., and Carrier, D. R. 1992. Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature 359:726729.Google Scholar
Tappen, M. 1994. Bone weathering in the tropical rain forest. Journal of Archaeological Science 21:667673.Google Scholar
Trueman, C. N., and Martill, D. M. 2002. The long-term survival of bone: the role of bioerosion. Archaeometry 44:371382.Google Scholar
Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N., and Weiner, S. 2004. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science 31:721739.CrossRefGoogle Scholar
Tuite, C. H. 1979. Population size, distribution, and biomass density of the Lesser Flamingo in the Eastern Rift Valley. Journal of Applied Ecology 16:765775.Google Scholar