Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T10:40:49.646Z Has data issue: false hasContentIssue false

Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U.S. Gulf Coastal Plain

Published online by Cambridge University Press:  08 April 2016

Jocelyn A. Sessa
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Timothy J. Bralower
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Mark E. Patzkowsky
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
John C. Handley
Affiliation:
Xerox Corporation, Webster, New York 14580, U.S.A.
Linda C. Ivany
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, U.S.A.

Abstract

The late Mesozoic through early Cenozoic is an interval of significant biologic turnover and ecologic reorganization within marine assemblages, but the timing and causes of these changes remain poorly understood. Here, we quantify the pattern and timing of shifts in the diversity (richness and evenness) and ecology of local (i.e., sample level) mollusk-dominated assemblages during this critical interval using field-collected and published data sets from the U.S. Gulf Coastal Plain. We test whether the biologic and ecologic patterns observed primarily at the global level during this time are also expressed at the local level, and whether the end-Cretaceous (K/Pg) mass extinction and recovery moderated these trends. To explore whether environment had any effect on these patterns, we examine data from shallow subtidal and offshore settings.

Assemblages from both settings recovered to pre-extinction diversity levels rapidly, in less than 7 million years. Following initial recovery, diversity remained unchanged in both settings. The trajectory of ecological restructuring was distinct for each setting in the wake of the K/Pg extinction. In offshore assemblages, the abundance and number of predatory carnivorous taxa dramatically increased, and surficial sessile suspension feeders were replaced by more active suspension feeders. In contrast, shallow subtidal assemblages did not experience ecological reorganization following the K/Pg extinction. The distinct ecological patterns displayed in each environment follow onshore-offshore patterns of innovation, whereby evolutionary novelties first appear in onshore settings relative to offshore habitats. Increased predation pressure may explain the significant ecological restructuring of offshore assemblages, whereby the explosive radiation of predators drove changes in their prey. Habitat-specific ecological restructuring, and its occurrence solely during the recovery interval, implies that disturbance and incumbency were also key in mediating these ecological changes.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M. 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios 9:516545.Google Scholar
Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259277.Google Scholar
Aberhan, M., Weidemeyer, S., Kiessling, W., Scasso, R. A., and Medina, F. A. 2007. Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections. Geology 35:227230.Google Scholar
Alexander, R. R., and Dietl, G. P. 2003. The Fossil Record of shell-breaking predation on marine bivalves and gastropods. Pp. 141176inKelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator-prey interactions in the fossil record. Plenum, New York.Google Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.Google Scholar
Alroy, J. 2010a. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.Google Scholar
Alroy, J. 2010b. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Bambach, R. K. 1993. Seafood through time; changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Bambach, R. K. 2002. Supporting predators: Changes in the global ecosystem inferred from changes in predator diversity. Pp. 319351inKowalewski, M.and Kelley, P. H., eds. The fossil record of predation. Paleontological Society, New Haven, Conn.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.Google Scholar
Bambach, R., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.Google Scholar
D'Agostino, A. E., and Yancey, T. E. 1996. Bio- and sequence stratigraphy of the upper portion of the Kincaid Formation, Frost Bluff, Milam County, Texas. Gulf Coast Association of Geological Societies Transactions 46:459461.Google Scholar
Gallagher, W. B. 1991. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain. Geology 19:967970.Google Scholar
Garvie, C. L. 2008. Unpublished collections from the Gulf Coastal Plain. PaleoDB (www.paleodb.org).Google Scholar
Gibson, T. G., Mancini, E. A., and Bybell, L. M. 1982. Paleocene to middle Eocene stratigraphy of Alabama. Transactions of the Gulf Coast Association of Geological Societies 32:449458.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A geologic time scale 2004. Cambridge University Press, New York.CrossRefGoogle Scholar
Hansen, T. 1978. Ecological control of evolutionary rates in Paleocene–Eocene marine molluscs. Ph.D. dissertation. Yale University, New Haven, Conn.Google Scholar
Hansen, T. 1988. Early Tertiary radiation of marine mollusks and the long-term effects of the Cretaceous-Tertiary extinction. Paleobiology 14:3751.Google Scholar
Hansen, T. A., Farrand, R. B., Montgomery, H. A., Billman, H. G., and Blechschmidt, G. 1987. Sedimentology and extinction patterns across the Cretaceous-Tertiary boundary interval in east Texas. Cretaceous Research 8:229252.CrossRefGoogle Scholar
Hansen, T. A., Farrell, B. R., and Upshaw, B. 1993a. The first 2 million years after the Cretaceous-Tertiary boundary in east Texas—Rate and paleoecology of the molluscan recovery. Paleobiology 19:251265.Google Scholar
Hansen, T. A., Upshaw, B., Kauffman, E. G., and Gose, W. 1993b. Patterns of molluscan extinction and recovery across the Cretaceous-Tertiary boundary in east Texas; report on new outcrops. Cretaceous Research 14:685706.Google Scholar
Hansen, T. A., Kelley, P. H., Melland, V. D., and Graham, S. E. 1999. Effect of climate-related mass extinctions on escalation in molluscs. Geology 27:11391142.2.3.CO;2>CrossRefGoogle Scholar
Hansen, T. A., Kelley, P. H., and Haasl, D. M. 2004. Paleoecological patterns in molluscan extinctions and recoveries: comparison of the Cretaceous-Paleogene and Eocene-Oligocene extinctions in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 214:233242.Google Scholar
Harper, E. M. 2006. Dissecting post-Palaeozoic arms races. Palaeogeography, Palaeoclimatology, Palaeoecology 232:322343.Google Scholar
Harries, P. J. 1999. Repopulations from Cretaceous mass extinctions; environmental and/or evolutionary controls? InBarrera, E.and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332:345364.Google Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:5162.CrossRefGoogle Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Hunt, G. 2008. Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360377.Google Scholar
Hunt, G. 2011. “paleoTS’: analyze paleontological time-series, R package version 0.4-1.Google Scholar
Huntley, J. W., and Kowalewski, M. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecological Monographs 54:187211.Google Scholar
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:13271330.Google Scholar
Jablonski, D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:715739.Google Scholar
Jablonski, D., and Bottjer, D. J. 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science 252:18311833.Google Scholar
Jablonski, D., and Chaloner, W. G. 1994. Extinctions in the fossil record. Philosophical transactions of the Royal Society of London B 344:1116.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.CrossRefGoogle ScholarPubMed
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the pull of the Recent on the history of marine diversity. Science 300:11331135.Google Scholar
Jiang, M. J., and Gartner, S. 1986. Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in east-central Texas. Micropaleontology 32:232255.Google Scholar
Kelley, P. H., and Hansen, T. A. 1993. Evolution of the naticid gastropod predator-prey system: an evaluation of the hypothesis of escalation. Palaios 8:358375.Google Scholar
Kelley, P. H., and Hansen, T. A. 1996a. Naticid gastropod prey selectivity through time and the hypothesis of escalation. Palaios 11:437445.Google Scholar
Kelley, P. H., and Hansen, T. A. 1996b. Recovery of the naticid gastropod predator-prey system from the Cretaceous-Tertiary and the Eocene-Oligocene extinction. Geological Society of London Special Publication 102:373386.Google Scholar
Kelley, P. H., and Hansen, T. A. 2001. The role of ecological interactions in the evolution of naticid gastropods and their molluscan prey. Pp. 149170inAllmon, W.and Bottjer, D., eds. Evolutionary paleoecology. Columbia University Press, New York.Google Scholar
Kelley, P. H., and Hansen, T. A. 2006. Comparisons of class- and lower taxon-level patterns in naticid gastropod predation, Cretaceous to Pleistocene of the U.S. Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology 236:302320.Google Scholar
Kosnik, M. A. 2005. Changes in Late Cretaceous-early Tertiary benthic marine assemblages: analyses from the North American coastal plain shallow shelf. Paleobiology 31:459479.Google Scholar
Kosnik, M. A., Alroy, J., Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Wagner, P. J. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303331.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:10911094.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Krug, A. Z., and Patzkowsky, M. E. 2004. Rapid recovery from the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 101:1760517610.Google Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: Patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.Google Scholar
Lockwood, R. 2004. The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology 30:507521.Google Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.Google Scholar
Madin, J. S., Alroy, J., Aberhan, M., Fürsich, F. T., Kiessling, W., Kosnik, M. A., and Wagner, P. J. 2006. Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science 312:897900.Google Scholar
Mancini, A. E., and Tew, B. H. 1995. Geochronology, biostratigraphy and sequence stratigraphy of a marginal marine to marine shelf stratigraphic succession; upper Paleocene and lower Eocene, Wilcox Group, eastern Gulf Coastal Plain, U.S.A. InBerggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM (Society for Sedimentary Geology) Special Publication 54:281293.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Miller, A. I., and Sepkoski, J. J. Jr. 1988. Modeling bivalve diversification; the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.CrossRefGoogle ScholarPubMed
Neogene Marine biota of Tropical America (NMITA) molluscan life habits database (http://eusmilia.geology.uiowa.edu/nmita.htm).Google Scholar
Patzkowsky, M. E., and Holland, S. M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.CrossRefGoogle Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (http://www.R-project.org).Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
Rosenzweig, M. L., and McCord, R. D. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202213.CrossRefGoogle Scholar
Schweitzer, C. E., and Feldmann, R. M. 2010. The Decapoda (Crustacea) as predators on Mollusca through geologic time. Palaios 25:167182.Google Scholar
Sepkoski, J. J. Jr, 1988. Alpha, beta, or gamma; where does all the diversity go? Paleobiology 14:221234.Google Scholar
Sepkoski, J. J. Jr, 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.Google Scholar
Sepkoski, J. J. Jr, 1993. Ten years in the library: New data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr, 1997. Biodiversity: past, present, and future. Journal of Paleontology 71:533539.Google Scholar
Sepkoski, J. J. Jr, 1998. Rates of speciation in the fossil record. Philosophical transactions of the Royal Society of London B 353:315326.Google Scholar
Sepkoski, J. J. Jr, Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record; implications for Phanerozoic biodiversity studies. Philosophical transactions of the Royal Society of London B 356:351367.Google Scholar
Sohl, N. F., and Koch, C. F. 1983. Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira assemblage zone in the East Gulf Coastal Plain. U.S. Geological Survey Open-File Report 83-45:239.Google Scholar
Sohl, N. F., and Koch, C. F. 1984. Upper Cretaceous (Maestrichtian) larger invertebrates from the Haustator bilira assemblage zone in the Atlantic Coastal Plain with further data for the East Gulf. U.S. Geological Survey Open-File Report 84-68:282.Google Scholar
Sohl, N. F., and Koch, C. F. 1987. Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira assemblage zone in the East Gulf Coastal Plain with further data for the east Gulf. U.S. Geological Survey Open-File Report 87–19:172.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve Mollusks. Journal of Paleontology 46:165212.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250inHallam, A., ed. Patterns of evolution, as illustrated by the fossil record. Elsevier, Amsterdam.Google Scholar
Stilwell, J. D. 2003. Patterns of biodiversity and faunal rebound following the K-T boundary extinction event in Austral Palaeocene molluscan faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 195:319356.CrossRefGoogle Scholar
Toulmin, L. D. 1977. Stratigraphic distribution of Paleocene and Eocene fossils in the eastern Gulf Coast region, Vol. 1. Geological Survey of Alabama, Tuscaloosa.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Vermeij, G. J. 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annual Review of Ecology and Systematics 25:219236.Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.Google Scholar
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 2008. Escalation and its role in Jurassic biotic history. Palaeogeography, Palaeoclimatology, Palaeoecology 263:38.Google Scholar
Walker, J. D., and Geissman, compilers, J. W. 2009. Geologic time scale. Geological Society of America, Boulder, Colo.Google Scholar
Wall, P. D., Ivany, L. C., and Wilkinson, B. H. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.Google Scholar
Williams, S. T., and Duda, T. F. 2008. Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific? Evolution 62:16181634.Google Scholar
Zinsmeister, W. J., Feldmann, R. M., Woodburne, M. O., and Elliot, D. H. 1989. Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica. Journal of Paleontology 63:731738.Google Scholar