Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:24:21.012Z Has data issue: false hasContentIssue false

Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis

Published online by Cambridge University Press:  08 February 2016

Heather S. Birch
Affiliation:
School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3YE, United Kingdom. E-mail: heather.s.birch@googlemail.com
Helen K. Coxall
Affiliation:
School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3YE, United Kingdom. E-mail: heather.s.birch@googlemail.com
Paul N. Pearson
Affiliation:
School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3YE, United Kingdom. E-mail: heather.s.birch@googlemail.com

Abstract

The carbon stable isotope (δ13C) composition of the calcitic tests of planktonic foraminifera has an important role as a geochemical tracer of ocean carbon system changes associated with the Cretaceous/Paleogene (K/Pg) mass extinction event and its aftermath. Questions remain, however, about the extent of δ13C isotopic disequilibrium effects and the impact of depth habitat evolution on test calcite δ13C among rapidly evolving Paleocene species, and the influence this has on reconstructed surface-to-deep ocean dissolved inorganic carbon (DIC) gradients. A synthesis of new and existing multispecies data, on the relationship between δ13C and δ18O and test size, sheds light on these issues. Results suggest that early Paleocene species quickly radiated into a range of depths habitats in a thermally stratified water column. Negative δ18O gradients with increasing test size in some species of Praemurica suggest either ontogenetic or ecotypic dependence on calcification temperature that may reflect depth/light controlled variability in symbiont photosynthetic activity. The pattern of positive δ13C test-size correlations allows us to (1) identify metabolic disequilibrium δ13C effects in small foraminifera tests, as occur in the immediate aftermath of the K/Pg event, (2) constrain the timing of evolution of foraminiferal photosymbiosis to 63.5 Ma, ∼0.9 Myr earlier than previously suggested, and (3) identify the apparent loss of symbiosis in a late-ranging morphotype of Praemurica. These findings have implications for interpreting δ13C DIC gradients at a resolution appropriate for incoming highly resolved K/Pg core records.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alegret, L., and Thomas, E. 2007. Deep sea environments across the Cretaceous/Paleogene boundary in the eastern South Atlantic Ocean (ODP Leg 208, Walvis Ridge). Marine Micropaleontology 64:117.CrossRefGoogle Scholar
Arthur, M. A., Zachos, J. C., and Jones, D. S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:4345.CrossRefGoogle Scholar
, A. W. H. 1982. Biology of planktonic foraminifera. InBuzas, M. A., Sen Gupta, B. K., and Broadhead, T. W., eds. Foraminifera: notes for a short course University of Tennessee Studies in Geology 6:5189.Google Scholar
Berger, W. H., Killingley, J. S., and Vincent, E. 1978. Stable isotopes in deep-sea carbonates—Box Core Erdc-92, West Equatorial Pacific. Oceanologica Acta 1:203216.Google Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43(Suppl. 1).CrossRefGoogle Scholar
Bijma, J., and Hemleben, C. 1994. Population dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep-Sea Research Part I: Oceanographic Research Papers 41:485510.CrossRefGoogle Scholar
Bijma, J., Hemleben, C., Huber, B. T., Erlenkeuser, H., and Kroon, D. 1998. Experimental determination of the ontogenetic stable isotope variability in two morphotypes of Globigerinella siphonifera (d'Orbigny). Marine Micropaleontology 35:141160.CrossRefGoogle Scholar
Boersma, A., and Premoli Silva, J. 1983. Paleocene planktonic foraminiferal biogeography and the paleoceanography of the Atlantic Ocean. Micropaleontology 29:355381.CrossRefGoogle Scholar
Boersma, A., and Shackleton, N. J. 1979. Oxygen and carbon isotope variations and planktonic foraminifer depth habitats, Late Cretaceous to Paleocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. Initial Reports of the Deep Sea Drilling Project 62:513526.Google Scholar
Bornemann, A., and Norris, R. D. 2007. Size-related stable isotope changes in Late Cretaceous planktic foraminifera: implications for paleoecology and photosymbiosis. Marine Micropaleontology 65:3242.CrossRefGoogle Scholar
Bouvier-Soumagnac, Y., and Duplessy, J.-C. 1985. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and Recent sediment: implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research 15:302320.CrossRefGoogle Scholar
Brummer, G. J. A., Hemleben, C., and Spindler, M. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (D'Orbigny). Marine Micropaleontology 12:357381.CrossRefGoogle Scholar
Cande, S. C., and Kent, D. V. 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, Solid Earth 100(B4):60936095.CrossRefGoogle Scholar
Cermeño, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., and Falkowski, P. G. 2008. The role of nutricline depth in regulating the ocean carbon cycle. Proceedings of the National Academy of Sciences USA 105:2034420349.CrossRefGoogle ScholarPubMed
Cooke, S., and Rohling, E. 1999. Stable oxygen and carbon isotopes in foraminiferal carbonate shells. Pp. 239258inSen Gupta, B. K., ed. Modern foraminifera. Kluwer Academic, Dordrecht.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Historical Biology 5:3763.CrossRefGoogle Scholar
Corfield, R. M., Hall, M. A., and Brasier, M. D. 1990. Stable isotope evidence for foraminiferal habitats during the development of the Cenomanian/Turonian ocean anoxic event. Geology 18:175178.2.3.CO;2>CrossRefGoogle Scholar
Coxall, H. K., D'Hondt, S., and Zachos, J. C. 2006. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34:297300.CrossRefGoogle Scholar
Coxall, H. K., Wilson, P. A., Pearson, P. N., and Sexton, P. F. 2007. Iterative evolution of digitate planktonic foraminifera. Paleobiology 33:495516.CrossRefGoogle Scholar
D'Hondt, S., and Zachos, J. C. 1993. On stable isotopic variation and earliest Paleocene planktonic foraminifera. Paleoceanography 8:527547.CrossRefGoogle Scholar
D'Hondt, S., and Zachos, J. C. 1998. Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis. Paleobiology 24:512523.CrossRefGoogle Scholar
D'Hondt, S., Zachos, J. C., and Schultz, G. 1994. Stable isotopic signals and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20:391406.CrossRefGoogle Scholar
D'Hondt, S., Timothy, H. D., King, J., and Gibson, C. 1996. Planktic foraminifera, asteroids and marine production: death and recovery at the Cretaceous-Tertiary boundary. InRyder, G., Fastovsky, D., and Gartner, S., eds. The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America Special Paper 307:303317.Google Scholar
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M. 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276279.CrossRefGoogle ScholarPubMed
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotopic evidence for depth stratification of Tertiary and cretaceous planktic foraminifera. Marine Micropaleontology 3:175196.CrossRefGoogle Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science 252:149158.CrossRefGoogle Scholar
Fuqua, L. M., Bralower, T. J., Arthur, M. A., and Patzkowsky, M. E. 2008. Evolution of calcareous nannoplankton and the recovery of marine food webs after the Cretaceous-Paleocene mass extinction. Palaios 23:185194.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Hönisch, B., and Hemming, N. G. 2004. Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects Paleoceanography 19. doi:10.1029/2004PA001026.Google Scholar
Houston, R. M., and Huber, B. T. 1998. Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktonic foraminifera. Marine Micropaleontology 34:2946.CrossRefGoogle Scholar
Houston, R. M., Huber, B. T., and Spero, H. J. 1999. Photosymbiosis and ontogenetic d18O and d13C trends in some Maastrichtian planktic foraminifera: a discussion of intraspecific variability and methodology. Marine Micropaleontology 36:169188.CrossRefGoogle Scholar
Kahn, M. I. 1979. Non-equilibrium oxygen and carbon isotopic fractionation in tests of living planktonic foraminifera. Oceanologica Acta 2:195208.Google Scholar
Matsumoto, K. 2007. Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophysical Research Letters 34:L20605.CrossRefGoogle Scholar
McConnaughey, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates.1. Patterns. Geochimica et Cosmochimica Acta 53:151162.CrossRefGoogle Scholar
McConnaughey, T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates. 2. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta 53:163171.CrossRefGoogle Scholar
Molina, E., Arenillas, I., and Arz, J. A. 1998. Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bulletin de la Société Géologique de France 169:351363.Google Scholar
Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., and Stefan Niebler, H. 1997. Planktonic foraminifera as recorders of past surface-water stratification. Geology 25:335338.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.CrossRefGoogle Scholar
Norris, R. D. 1998. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals and foraminifera. InNorris, R. D. and Corfield, R. M., eds. Isotope paleobiology and paleoecology. Paleontological Society Papers 4:68100.CrossRefGoogle Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 85.CrossRefGoogle Scholar
Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M., and Collier, R. W. 1996. Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochimica et Cosmochimica Acta 60:45094523.CrossRefGoogle Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multispecies isotope stratigraphy, DSDP Site 523, South Atlantic. Journal of Foraminiferal Research 23:123140.CrossRefGoogle Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413:481487.CrossRefGoogle ScholarPubMed
Quillévéré, F., Norris, R. D., Moussa, I., and Berggren, W. A. 2001. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera). Paleobiology 27:311326.2.0.CO;2>CrossRefGoogle Scholar
Ravelo, A. C., and Fairbanks, R. G. 1995. Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic. Journal of Foraminiferal Research 25:5374.CrossRefGoogle Scholar
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A., and Stouffer, R. 2004. Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18.CrossRefGoogle Scholar
Schettino, A., and Scotese, C. R. 2005. Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions. Geophysical Journal International 163:727759.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315316.CrossRefGoogle ScholarPubMed
Sexton, P. F., Wilson, P. A., and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: “glassy” versus “frosty.” Geochemistry, Geophysics, Geosystems 7, Q12P10. doi:10.1029/2006GC001291.CrossRefGoogle Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research 15:321336.CrossRefGoogle Scholar
Shipboard Scientific Party. 2004. Leg 208 summary. InZachos, J. C., Kroon, D., and Blum, P., et al. Proceedings of the Ocean Drilling Program, Initial Reports 208:112College Station, Tex.Google Scholar
Spero, H. J. 1992. Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater ∑CO2. Marine Micropaleontology 19:275285.CrossRefGoogle Scholar
Spero, H. J., and DeNiro, M. J. 1987. The influence of symbiont photosynthesis on the δ18O and δ13Cvalues of planktonic foraminiferal shell calcite. Symbiosis 4:213228.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable-isotope variability in the planktic foraminifera Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontology 22:221234.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1988. Extracting environmental information from planktonic foraminiferal δ13C data. Nature 335:717719.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1989. Opening the carbon isotope “vital effect” black box. 1. Seasonal temperatures in the euphotic zone. Paleoceanography 4:593601.CrossRefGoogle Scholar
Spero, H. J., Leche, I., and Williams, D. F. 1991. Opening the carbon isotope “vital effect” box. 2 Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6:639655.CrossRefGoogle Scholar
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497500.CrossRefGoogle Scholar
Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K. 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography 18, PA1022. doi:10.1029/2002PA000814.CrossRefGoogle Scholar
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F. 2008. Astronomical calibration of the Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology 257:377403.CrossRefGoogle Scholar
Wit, J. C., Reichart, G. J., A Jung, S. J., and Kroon, D. 2010. Approaches to unravel seasonality in sea surface temperatures using paired single-specimen foraminiferal δ18O and Mg/Ca analyses. Paleoceanography 25, PA4220. doi:10.1029/2009PA001857.CrossRefGoogle Scholar
Zachos, J. C., and Arthur, M. A. 1986. Paleoceanography of the Cretaceous-Tertiary boundary event: Inferences from stable isotopic and other data. Paleoceanography 1:526.CrossRefGoogle Scholar
Zachos, J. C., Arthur, M. A., and Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:6164.CrossRefGoogle Scholar