Hostname: page-component-69cd664f8f-5rtl5 Total loading time: 0 Render date: 2025-03-13T07:57:56.692Z Has data issue: false hasContentIssue false

The extended common cause: causal links between punctuated evolution and sedimentary processes

Published online by Cambridge University Press:  11 March 2025

P. David Polly*
Affiliation:
Earth & Atmospheric Sciences, Indiana University, Bloomington, Indiana 47405, U.S.A Geosciences & Geography, University of Helsinki, Helsinki 00014, Finland
*
Corresponding author: P. David Polly; Email: pdpolly@pollylab.org

Abstract

The common-cause hypothesis says that factors regulating the sedimentary record also exert macroevolutionary controls on speciation, extinction, and biodiversity. I show through computational modeling that common cause factors can, in principle, also control microevolutionary processes of trait evolution. Using Bermuda and its endemic land snail Poecilozonites, I show that the glacial–interglacial sea-level cycles that toggle local sedimentation between slow pedogenesis and rapid eolian accumulation could also toggle evolution rates between long slow phases associated with large geographic ranges and short rapid phases associated with small, fragmented ranges and “genetic surfing” events. Patterns produced by this spatially driven process are similar to the punctuated equilibria patterns that Gould inferred from the fossil record of Bermuda, but without speciation or true stasis. Rather, the dynamics of this modeled system mimic a two-rate Brownian motion process (even though the rate parameter is technically constant) in which the contrast in rate and duration of the phases makes the slower one appear static. The link between sedimentation and microevolution in this model is based on a sediment-starved island system, but the principles may apply to any system where physical processes jointly control the areal extents of sedimentary regimes and species’ distributions.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Handling Editor: Linda Ivany

References

Literature Cited

Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R., Fox, D. L., Hopkins, S. S., et al. 2017. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends in Ecology and Evolution 32:211226.CrossRefGoogle ScholarPubMed
Bartolomé, M., Sancho, C., Benito, G., Medialdea, A., Calle, M., Moreno, A., Leunda, M., et al. 2021. Effects of glaciation on karst hydrology and sedimentology during the Last Glacial Cycle: the case of Granito cave, Central Pyrenees (Spain). Catena 206:105252.CrossRefGoogle Scholar
Baur, A., and Baur, B.. 1993. Daily movement patterns and dispersal in the land snail Arianta arbustorum. Malacologia 35:8998.Google Scholar
Beaulieu, J. M., Jhwueng, D. C., Boettiger, C., and O’Meara, B. C.. 2012. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66:23692383.CrossRefGoogle ScholarPubMed
Bieler, R., and Slapcinsky, J.. 2000. A case study for the development of an island fauna: recent terrestrial mollusks of Bermuda. Nemouria 44:199.Google Scholar
Bookstein, F. L. 1988. Random walk and the biometrics of morphological characters. Evolutionary Biology 23:369398.CrossRefGoogle Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bush, A. M., Powell, M. G., Arnold, W. S., Bert, T. M, and Daley, G. M.. 2002. Time-averaging, evolution, and morphological variation. Paleobiology 28:925.2.0.CO;2>CrossRefGoogle Scholar
Butler, M. A., and King, A. A.. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist 164:683695.CrossRefGoogle ScholarPubMed
Catuneanu, O. 2006. Principles of sequence stratigraphy. Elsevier, Amsterdam.Google Scholar
Chakrapani, G. J. 2005. Factors controlling variations in river sediment loads. Current Science 88:569575.Google Scholar
Cheverud, J. M., and Buikstra, J. E.. 1982. Quantitative genetics of skeletal nonmetric traits in the rhesus macaques of Cayo Santiago. III. Relative heritability of skeletal nonmetric and metric traits. American Journal of Physical Anthropology 59:151155.CrossRefGoogle ScholarPubMed
Clavel, J., Escarguel, G., and Merceron, G.. 2015. mvMorph: an R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution 6:13111319.CrossRefGoogle Scholar
Dryden, I. L., and Mardia, K. V.. 1998. Statistical shape analysis. Wiley, Chichester, U.K.Google Scholar
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria, an alternative to phyletic gradualism. Pp. 540547 in Schopf, T. J. M., ed. Models in palaeobiology. Freedman, Cooper, San Francisco.Google Scholar
Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton University Press, Princeton, N.J.Google ScholarPubMed
Estes, S., and Arnold, S. J.. 2007. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist 169:227244.CrossRefGoogle ScholarPubMed
Excoffier, L., and Ray, N.. 2008. Surfing during population expansions promotes genetic revolutions and structuration. Trends in Ecology and Evolution 23:347351.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1988. Phylogenies and quantitative characters. Annual Review of Ecology and Systematics 19:445471.CrossRefGoogle Scholar
Fisher, R. A. 1930. The genetical theory of natural selection. Clarendon Press, Oxford.CrossRefGoogle Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.CrossRefGoogle Scholar
Gingerich, P. D. 1993. Quantification and comparison of evolutionary rates. American Journal of Science 293A:453478.CrossRefGoogle Scholar
Gingerich, P. D. 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112-113:127144.CrossRefGoogle ScholarPubMed
Goddard, A.S., and Carrapa, B.. 2018. Effects of Miocene–Pliocene global climate changes on continental sedimentation: a case study from the southern Central Andes. Geology 46:647650.CrossRefGoogle Scholar
Gould, S. J. 1969. An evolutionary microcosm: Pleistocene and recent history of the land snail P. (Poecilozonites) in Bermuda. Bulletin of the Museum of Comparative Zoology 138:407531.Google Scholar
Gould, S. J., and Eldredge, N.. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B.. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48:217250.CrossRefGoogle Scholar
Hannisdal, B. 2006. Phenotypic evolution in the fossil record: numerical experiments. Journal of Geology 114:133153.CrossRefGoogle Scholar
Hanski, I. 1999. Metapopulation ecology. Oxford University Press, Oxford.CrossRefGoogle Scholar
Harmon, R. S., Schwarcz, H. P., and Ford, D. C.. 1978. Late Pleistocene sea-level history of Bermuda. Quaternary Research 9:205218.CrossRefGoogle Scholar
Hearty, P.J. 2002. A revision of the late Pleistocene stratigraphy of Bermuda. Sedimentary Geology 153:121.CrossRefGoogle Scholar
Hearty, P. J., and Olson, S. L.. 2010. Geochronology, biostratigraphy, and changing shell morphology in the land snail subgenus Poecilozonites during the Quaternary of Bermuda. Palaeogeography, Palaeoclimatology, Palaeoecology 293:929.CrossRefGoogle Scholar
Hearty, P. J., Vacher, H. L., and Mitterer, R. M.. 1992. Aminostratigraphy and ages of Pleistocene limestones of Bermuda. Bulletin of the Geological Society of America 104:471480.2.3.CO;2>CrossRefGoogle Scholar
Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58:247276.CrossRefGoogle Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26(Suppl.):148168.CrossRefGoogle Scholar
Hunt, G. 2004. Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426443.2.0.CO;2>CrossRefGoogle Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.CrossRefGoogle Scholar
Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences USA 104:1840418408.CrossRefGoogle ScholarPubMed
Hunt, G. 2008. Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360377.CrossRefGoogle Scholar
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.CrossRefGoogle ScholarPubMed
Ibrahim, K. M., Nichols, R. A., and Hewitt, G. M.. 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282291.CrossRefGoogle Scholar
Jablonski, D. 2000. Micro-and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 26(Suppl. to No. 4):1552.CrossRefGoogle Scholar
Jablonski, D. 2017. Approaches to macroevolution: 2. Sorting of variation, some overarching issues, and general conclusions. Evolutionary Biology 44:451475.CrossRefGoogle ScholarPubMed
Jeffery, M. L., Yanites, B. J., Poulsen, C. J., and Ehlers, T. A.. 2014. Vegetation‐precipitation controls on Central Andean topography. Journal of Geophysical Research: Earth Surface 119:13541375.CrossRefGoogle Scholar
Katz, B. J. 2005. Controlling factors on source rock development—a review of productivity, preservation, and sedimentation rate. SEPM Special Publication 82:716.Google Scholar
Kidwell, S. M. 1986. Models for fossil concentrations: paleobiologic implications. Paleobiology 12:624.CrossRefGoogle Scholar
Kidwell, S.M., and Holland, S. M.. 2002. The quality of the fossil record: implications for evolutionary analyses. Annual Review of Ecology and Systematics 33:561588.CrossRefGoogle Scholar
Kimura, M. 1954. Process leading to quasi-fixation of genes in natural populations due to random fluctuation in selection intensities. Genetics 39:280295.CrossRefGoogle ScholarPubMed
Kimura, M. 1983. Neutral theory of molecular evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kraus, M.J., and Gwinn, B.. 1997. Facies and facies architecture of Paleogene floodplain deposits, Willwood Formation, Bighorn basin, Wyoming, USA. Sedimentary Geology 114:3354.CrossRefGoogle Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314334.CrossRefGoogle ScholarPubMed
Lande, R. 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology 12:343354.CrossRefGoogle Scholar
Ledevin, R., Michaux, J. R., Deffontaine, V., Henttonen, H., and Renaud, S.. 2010. Evolutionary history of the bank vole Myodes glareolus: a morphometric perspective. Biological Journal of the Linnean Society 100:681694.CrossRefGoogle Scholar
Levins, R. 1968. Evolution in changing environments, some theoretical explorations. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Lisiecki, L. E., and Raymo, M. E.. 2005. A Plio-Pleistocene stack of 57 globally distributed δ18O records. Paleoceanography 20:PA1003.Google Scholar
Loughney, K. M., Badgley, C., Bahadori, A., Holt, W. E., and Rasbury, E. T.. 2021. Tectonic influence on Cenozoic mammal richness and sedimentation history of the Basin and Range, western North America. Science Advances 7:eabh4470.CrossRefGoogle ScholarPubMed
McKinney, M. L. 1985. Distinguishing patterns of evolution from patterns of deposition. Journal of Paleontology 59:561567.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.. 2005. The Phanerozoic record of sea-level change. Science 310:12931298.CrossRefGoogle ScholarPubMed
Neumann, A. C. 1965. Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Bulletin of Marine Science 15:9871035.Google Scholar
Newell, N.D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology 32:371385.Google Scholar
Outerbridge, M. E. 2015. The Bermuda land snail Poecilozonites bermudensis—a Lazarus species recently discovered in the center of an urban environment. Pp. 175177 in Pienkowski, M. and Wensink, C., eds. Sustaining partnerships: a conference on conservation and sustainability in UK overseas territories, Crown dependencies, and other small island communities. UK Overseas Territories Conservation Forum, Nottingham.Google Scholar
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.CrossRefGoogle ScholarPubMed
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Peters, S. E., and Foote, M.. 2002. Determinants of extinction in the fossil record. Nature 416:420424.CrossRefGoogle ScholarPubMed
Peters, S. E., and Heim, N. A.. 2011. Macrostratigraphy and macroevolution in marine environments: testing the common-cause hypothesis. Geological Society of London Special Publication 358:95104.CrossRefGoogle Scholar
Pilsbry, H. A. 1924. Recent and fossil Bermudan snails of the genus Poecilozonites. Proceedings of the Academy of Natural Sciences of Philadelphia 76:19.Google Scholar
Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica 7.2.7A:128.Google Scholar
Polly, P. D. 2017. Morphometrics and evolution: the challenge of crossing rugged phenotypic landscapes with straight paths. Vavilov Journal of Genetics and Breeding 21:452461.CrossRefGoogle Scholar
Polly, P. D. 2019a. Climate, diversification, and refugia in the common shrew: evidence from the fossil record. Pp. 407454 in Searle, J. B., Zima, J., and Polly, P. D., eds. Shrews, chromosomes and speciation. Cambridge University Press: Cambridge.CrossRefGoogle Scholar
Polly, P. D. 2019b. Spatial processes and evolutionary models: a critical review. Palaeontology 62:175195.CrossRefGoogle Scholar
Polly, P. D. 2020. Functional tradeoffs carry phenotypes across the valley of the shadow of death. Integrative and Comparative Biology 60:12681282CrossRefGoogle ScholarPubMed
Polly, P. D. 2022. Snails for Mathematica, Version 1.0. https://github.com/pdpolly/Snails-For-MathematicaGoogle Scholar
Polly, P. D. 2024. Geometric morphometrics for Mathematica, Version 13.0. https://github.com/pdpolly/Morphometrics-for-Mathematica (10.5281/zenodo.11288554)Google Scholar
Polly, P. D. 2023a. Extinction and morphospace occupation: a critical review. Cambridge Prisms: Extinction 1:e17.Google Scholar
Polly, P. D. 2023b. Phylogenetics for Mathematica, Version 6.9. https://github.com/pdpolly/Phylogenetics-for-Mathematica (10.5281/zenodo.10447177)Google Scholar
Polly, P. D., and Motz, G. J.. 2017. Patterns and processes in morphospace: geometric morphometrics of three-dimensional objects. In Tapanila, L. and Rahman, I., eds. Virtual paleontology. Paleontological Society Paper 22:7199.CrossRefGoogle Scholar
Polly, P. D., and Wójcik, J. M.. 2019. Geometric morphometric tests for phenotypic divergence between chromosome races. Pp. 336364 in Searle, J. B., Zima, J., and Polly, P. D., eds. Shrews, chromosomes and speciation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Polly, P. D., Eronen, J. T., Lawing, A. M., and Schnitzler, J.. 2016. Processes of ecometric patterning: modelling functional traits, environments, and clade dynamics in deep time. Biological Journal of the Linnean Society 118:3963.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Revell, L. J., and Harmon, L.. 2008. Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters. Evolutionary Ecology Research 10:311331.Google Scholar
Reynolds, P. H., and Aumento, F.. 1974. Deep Drill 1972. Potassium-argon dating of the Bermuda drill core. Canadian Journal of Earth Sciences 11:12691273.CrossRefGoogle Scholar
Ruhe, R. V., Cady, J. G., and Gomez, R. S.. 1961. Paleosols of Bermuda. Geological Society of America Bulletin 72:11211142.CrossRefGoogle Scholar
Sayles, R. W. 1931. Bermuda during the ice age. Proceedings of the American Academy of Arts and Sciences 66:381468.CrossRefGoogle Scholar
Schreve, D. C., and Bridgland, D. R.. 2002. Correlation of English and German Middle Pleistocene fluvial sequences based on mammalian biostratigraphy. Netherlands Journal of Geosciences 81:357373.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Sloss, L.L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74:93114.CrossRefGoogle Scholar
Smith, A. B., Gale, A. S., and Monks, N. E.. 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.2.0.CO;2>CrossRefGoogle Scholar
Stanley, D. J., and Swift, D. J. P.. 1968. Bermuda’s reef-front platform bathymetry and significance. Marine Geology 6:479500.CrossRefGoogle Scholar
Stephan, W. 2019. Selective sweeps. Genetics 211:513.CrossRefGoogle ScholarPubMed
Stigall, A. L. 2019. The invasion hierarchy: ecological and evolutionary consequences of invasions in the fossil record. Annual Reviews of Ecology, Evolution, and Systematics 50:355380.CrossRefGoogle Scholar
Sutherland, M. G., McLean, S. J., Love, M. R., Carignan, K. S., and Eakins, B. W.. 2013. Digital elevation models of Bermuda: data sources, processing, and analysis. National Geophysical Data Center, NOAA. http://www.ngdc.noaa.gov.Google Scholar
Vacher, H. L. 1973. Coastal dunes of younger Bermuda. Pp. 355391 in Coates, D. R., ed. Coastal geomorphology. Routledge, London.Google Scholar
Vacher, H. L., Hearty, P. J., and Row, M. P.. 1995. Stratigraphy of Bermuda: nomenclature, concepts, and status of multiple systems of classification. Geological Society of America Special Paper 300:271294.Google Scholar
Valentine, J. W. 1973. Evolution of the marine biosphere. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Valentine, J. W., and Jablonski, D.. 1991. Biotic effects of sea-level change: the Pleistocene test. Journal of Geophysical Research 96:68736878.CrossRefGoogle Scholar
Valenza, J. M., Edmonds, D. A., and Weissmann, G. S.. 2022. Quantifying river avulsion activity from satellite remote sensing: implications for how avulsions contribute to floodplain stratigraphy in foreland basins. Journal of Sedimentary Research 92:487502.CrossRefGoogle Scholar
Vrba, E. S. 1993. Turnover-pulses, the Red Queen, and related topics. American Journal of Science 293A:418452.CrossRefGoogle Scholar
Walsh, B., and Lynch, M.. 2018. Evolution and selection of quantitative traits. Oxford University Press, Oxford.CrossRefGoogle Scholar
Weaver, L. N., Kelson, J. R., Holder, R. M., Niemi, N. A., and Badgley, C.. 2024. On the role of tectonics in stimulating the Cretaceous diversification of mammals. Earth-Science Reviews 248:104630.CrossRefGoogle Scholar
Whitlock, M. C., and Barton, N. H.. 1997. The effective size of a subdivided population. Genetics 146:427441.CrossRefGoogle ScholarPubMed
Wolfram Research, Inc. 2019. Mathematica, Version 12.0. Champaign, Ill.Google Scholar
Wood, J. L., Yates, M. C., and Fraser, D. J.. 2016. Are heritability and selection related to population size in nature? Meta‐analysis and conservation implications. Evolutionary Applications 9:640657.CrossRefGoogle ScholarPubMed
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97159.CrossRefGoogle ScholarPubMed
Wright, S. 1940. Statistical genetics in relation to evolution. American Naturalist 74:232248.CrossRefGoogle Scholar