Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T03:52:30.089Z Has data issue: false hasContentIssue false

Facies preference predicts extinction risk in Ordovician graptolites

Published online by Cambridge University Press:  08 April 2016

Roger A. Cooper
Affiliation:
GNS Science, Post Office Box 30368, Lower Hutt 5040, New Zealand. E-mail: r.cooper@gns.cri.nz
Peter M. Sadler
Affiliation:
Department of Earth Sciences, University of California Riverside, Riverside, California 92521. E-mail: peter.sadler@ucr.edu

Abstract

The most abundant and diverse graptolite assemblages are found in offshore, deep-water black shales—the classical “graptolite fades” (deep-water or isograptid biofacies). The mean duration of Ordovician graptolite species confined to the deep-water facies (here referred to as “group 1” species) is 2.19 Myr, significantly shorter than the mean duration of species in the deep-water facies that are also known in sediments of the shallow-water shelf or platform (“group 2” species) −4.42 Myr, indicating a significantly higher extinction probability (p = <0.001). These figures are based on the precise age ranges of species derived from the time-calibrated composite sequence of 1446 Ordovician to early Devonian graptolites, built by the constrained optimization procedure (CONOP) from 256 measured sections worldwide, and exclude the effects of the Hirnantian mass extinction. The difference between groups cuts across families, morphological types, and pandemic/endemic distributions. An environmental influence is strongly suggested, and although both groups were planktonic, they were unlikely to have shared the same habitat in the water column. The new duration measurements therefore are interpreted as favoring a depth-stratification of graptolite habitats in the water column.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agresti, A. 2007. An introduction to categorical data analysis, 2d ed. Wiley-Interscience, Hoboken.Google Scholar
Barnes, C. R. 2004. Ordovician Oceans and Climate. Pp. 7276 in Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G., eds. The great Ordovician biodiversification event. Columbia University Press, New York.Google Scholar
Bergström, S. M., Toprak, F. Ö., Huff, W. D., and Mundil, R. 2008. Implications of a new, biostratigraphically well-controlled, radio-isotopic age for the lower Telychian Stage of the Llandovery Series (Lower Silurian, Sweden). Episodes 31:309314.CrossRefGoogle Scholar
Berry, W. B. N. 1962. Graptolite occurrence and ecology. Journal of Paleontology 36:285293.Google Scholar
Berry, W. B. N. 1974. Types of Early Paleozoic faunal replacements in North America: their relationship to environmental change. Journal of Geology 82:371382.CrossRefGoogle Scholar
Berry, W. B. N., and Boucot, A. J. 1972. Silurian graptolite depth zonation. Proceedings of the 24th International Geological Congress, Montreal, section 7, Paleontology, pp. 5965.Google Scholar
Berry, W. B. N., Wilde, P., and Quinby-Hunt, M. S. 1987. The graptolite habitat: an oceanic non-sulfide low oxygen zone? Bulletin of the Geological Society of Denmark 35:103113.Google Scholar
Brenchley, P. J., Carden, G. A. F., and Marshall, J. D. 1995. Environmental changes associated with the “First Strike” of the Late Ordovician mass extinction. Modern Geology 50:6982.Google Scholar
Brenchley, P. J., Carden, G. A. F., Hints, L., Kaljo, D. L., Marshall, J. D., Martma, T., Meidla, T., and Nölvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115:89104.Google Scholar
Bulman, O. M. B. 1964. Lower Palaeozoic plankton [presidential address]. Quarterly Journal of the Geological Society of London 120, Part 4(480):455476.CrossRefGoogle Scholar
Chen, X. 1990. Graptolite depth zonation. Acta Palaeontologica Sinica 29:507526.Google Scholar
Chen, X., Zhang, Y.-D., and Mitchell, C. M. 2001. Early Darriwilian graptolites from central and western China. Alcheringa 25:191210.Google Scholar
Chen, X., Rong, J.-y., Li, Y., and Boucot, A. J. 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeography, Palaeoclimatology, Palaeoecology 204:353372.Google Scholar
Chen, X., Melchin, M. J., Sheets, H. D., Mitchell, C. E., and Fan, J.-X. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from south China. Journal of Paleontology 79:842861.Google Scholar
Cisne, J. L., and Chandlee, G. O. 1982. Taconic foreland basin graptolites: age zonation, depth zonation, and use in ecostratigraphic correlation. Lethaia 15:343363.CrossRefGoogle Scholar
Cooper, M. R., Crowley, Q. G., and Rushton, A. W. A. 2008. New age constraints for the Ordovician Tyrone Volcanic Group, Northern Ireland Journal of the Geological Society. London 165:333339.Google Scholar
Cooper, R. A. 1998. Towards a general model for the depth ecology of graptolites. In Gutierrez-Marco, J. C. and Rábano, I., eds. Proceedings of the sixth international graptolite conference (GWG-IPA) and 1998 field meeting. Temas Geológico-Mineros ITGE 23:161163.Google Scholar
Cooper, R. A. 1999. Ecostratigraphy, zonation and global correlation of earliest Ordovician planktic graptolites. Lethaia 32:116.Google Scholar
Cooper, R. A. 2001. Graptolites. McGraw-Hill Yearbook of Science and Technology 2001:175178.Google Scholar
Cooper, R. A., and Sadler, P. M. 2004. Chapter 15, Ordovician. In Gradstein, F., Ogg, J. G., and Smith, A. G., eds. A geologic time scale. Cambridge University Press, Cambridge.Google Scholar
Cooper, R. A., Fortey, R. A., and Lindholm, K. 1991. Latitudinal and depth zonation of early Ordovician graptolites. Lethaia 24:199218.CrossRefGoogle Scholar
Egenhoff, S., and Maletz, J. 2007. Graptolites as indicators of maximum flooding surfaces in monotonous deep-water shelf successions. Palaios 22:373383.Google Scholar
Erdtmann, B.-D. 1976. Ecostratigraphy of Ordovician graptoloids. Pp. 621643 in Bassett, M. G., ed. The Ordovician System: proceedings of a Palaeontological Association Symposium, Birmingham, September 1974. University of Wales Press and National Museum of Wales, Cardiff. Google Scholar
Erdtmann, B.-D. 1984. Outline ecostratigraphic analysis of the Ordovician graptolite zones in Scandinavia in relation to the paleogeographic disposition of the Iapetus. Geologica et Palaeontologica 18:915.Google Scholar
Erdtmann, B.-D. 1988. The earliest Ordovician nematophorid graptolites: taxonomy and correlation. Geological Magazine 125:327348.CrossRefGoogle Scholar
Finney, S. C. 1984. Biogeography of Ordovician graptolites in the southern Appalachians. Pp. 167176 in Bruton, D. L., ed. Aspects of the Ordovician System. Norsk, Universitetsforlaget, Oslo.Google Scholar
Finney, S. C. 1986. Graptolite biofacies and correlation of eustatic, subsidence, and tectonic events in the Middle to Upper Ordovician of North America. Palaios 1:435461.CrossRefGoogle Scholar
Finney, S. C., and Berry, W. B. N. 1997. New perspectives on graptolite distributions and their use as indicators of platform margin dynamics. Geology 25:919922.2.3.CO;2>CrossRefGoogle Scholar
Finney, S. C., Berry, W. B. N., and Cooper, J. D. 2007. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia 40:281291.Google Scholar
Fischer, A. J., and Bottjer, D. J. 1995. Oxygen-depleted waters: a lost biotope and its role in ammonite and bivalve evolution. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 195:133146.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Fortey, R. A., and Bruton, D. L. 1984. Global earlier Ordovician transgressions and regressions and their biological implications. In Bruton, D. L., ed. Aspects of the Ordovician System. Proceedings of the fourth international symposium on the Ordovician System, Oslo. Palaeontological Contributions from the University of Oslo 295:3750.Google Scholar
Fortey, R. A., and Cocks, L. R. M. 1986. Marginal faunal belts and their structural implications, with examples from the Lower Palaeozoic. Journal of the Geological Society, London 143:151160.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1992. Isotopic evidence for depth stratification and paleoecology of Miocene planktonic Foraminifera: western equatorial Pacific DSDP Site 289. Pp. 117147 in Tsuchi, R. and Ingle, J. C., eds. Pacific Neogene: environment, evolution, and events. University of Tokyo Press, Tokyo.Google Scholar
Goldman, D., Bergström, S. M., and Mitchell, C. E. 1995. Revision of the Zone 13 graptolite biostratigraphy in the Marathon, Texas, standard succession and its bearing on Upper Ordovician graptolite biogeography. Lethaia 28:115128.CrossRefGoogle Scholar
Goldman, D., Mitchell, C. E., and Joy, M. P. 1999. The stratigraphic distribution of graptolites in the classic upper Middle Ordovician Utica Shale of New York State: an evolutionary succession or a response to relative sea-level change? Paleobiology 25:273294.CrossRefGoogle Scholar
Hannigan, R. E., and Basu, A. R. 1997. Isotopic evidence for increased cold deep water production in the Late Ordovician; inception of “ice house” conditions prior to the Ashgillian glaciation. Geological Society of America Abstracts with Programs 29(6):395.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.CrossRefGoogle Scholar
Huff, W. D., Davis, D., Bergström, S. M., Krekeler, M. P. S., Kolata, D. R., and Cingolani, C. 1997. A biostratigraphically well-constrained K-bentonite U-Pb zircon age of the lowermost Darriwilian Stage (Middle Ordovician) from the Argentine Precordillera. Episodes 20:2933.Google Scholar
Jablonski, D., and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous molluscs: organismic versus species-level explanations. The American naturalist 168(4)556564.Google Scholar
Kaljo, D. 1978. On the bathymetric distribution of graptolites. Acta Palaeontologica Polonica 23:523529.Google Scholar
Kemple, W. G., Sadler, P. M., and Strauss, D. J. 1995. Extending graphic correlation to many dimensions: stratigraphic correlation as constrained optimisation. In Mann, K. O., Lane, H. R., Scholle, P. A., eds. Graphic correlation. SEPM Special Publication 53:6582. Tulsa, Okla. Google Scholar
Kirk, N. H. 1969. Some thoughts on the ecology, mode of life and evolution of the Graptolithina. Proceedings of the Geological Society of London 1659:273292.Google Scholar
Kirk, N. H. 1978. Mode of life of graptolites. Acta Palaeontologica Polonica 23:533555.Google Scholar
Lenz, A. C., and Chen, X. 1985. Middle to Upper Ordovician graptolite biostratigraphy of Peel River and other areas of the northern Canadian Cordillera. Canadian Journal of Earth Sciences 22:227239.CrossRefGoogle Scholar
Lenz, A. C., Jin, J., McCracken, A. D., Utting, J., and Westrop, S. R. 1993. Paleoscene 15. Paleozoic biostratigraphy. Geoscience Canada 20(2):4173.Google Scholar
Maletz, J., and Egenhoff, S. O. 2007. Late Tremadoc to Arenig graptolite faunas of southern Bolivia and their implications for a worldwide biozonation. Lethaia 34:4762.Google Scholar
Maletz, J., and Ortega, G. 1995. Ordovician graptolites of South America: palaeogeographic implications. Pp. 189192 in Cooper, J. D., Droser, M. L., and Finney, S. C., eds. Ordovician Odyssey: short papers for the Seventh International Symposium on the Ordovician System. Pacific Section Society for Sedimentary Geology (SEPM), Fullerton, Calif. Google Scholar
Melchin, M. J., and Mitchell, C. E. 1991. Late Ordovician extinction in the Graptoloidea. Pp. 143156 in Barnes, C. R., and Williams, S. H., eds. Advances in Ordovician Geology. Geological Survey of Canada paper 90–9.Google Scholar
Mitchell, C. E., Brussa, E. D., and Astini, R. A. 1998. A diverse Da2 fauna preserved within an altered volcanic ash fall, Eastern Precordillera, Argentina: implications for graptolite paleoecology. Pp. 222223 in Gutierrez-Marco, J. C. and Rábano, I., eds. Proceedings of the sixth international graptolite conference (GWG-IPA) and 1998 field meeting. Temas Geológico-Mineros ITGE 23:222223.Google Scholar
Mitchell, C. M., Brussa, E. D., and Maletz, J. 2008. A mixed isograptid-didymograptid graptolite assemblage from the Middle Ordovician of west Gondwana (NW Bolivia): implications for graptolite paleoecology. Journal of Paleontology 82:11141126.Google Scholar
Moors, H. T. 1968. An attempted statistical appraisal of the graptolite fauna of Willey's Quarry, Victoria, Australia. Proceedings of the Royal Society of Victoria 81:137141.Google Scholar
Mu, E.-Z., Ge, M. Y., Chen, X., Ni, Y. N., and Lin, Y. K. 1979. Lower Ordovician graptolites of Southwest China. Palaeontologica Sinica, new series B, 156(13):1192.Google Scholar
Mu, E.-Z., Boucot, A. J., Chen, X., and Rong, J.-Y. 1986. Correlation of the Silurian rocks of China. Geological Society of America Special Paper 202.Google Scholar
Mullins, H. T., Thompson, J. B., McDougal, K., and Vercoutere, T. L. 1985. Oxygen minimum zone edge effects: evidence from central California coastal upwelling system. Geology 13:491494.Google Scholar
Rickards, R. B. 1975. Palaeoecology of the Graptolithina, an extinct class of the phylum Hemichordata. Biological Reviews of the Cambridge Philosophical Society 50:397436.Google Scholar
Rigby, S. 1993. Population analysis and orientation studies of graptoloids from the Middle Ordovician Utica Shale, Quebec. Palaeontology 36:267282.Google Scholar
Ross, R. J. Jr. 1961. Distribution of Ordovician graptolites in eugeosynclinal facies in western North America and its paleogeographic implications. AAPG Bulletin 45:330341.Google Scholar
Sadler, P. M. 2001. Constrained optimization—approaches to the paleobiologic correlation and seriation problems: a users' guide and reference manual to the CONOP program family. University of California, Riverside.Google Scholar
Sadler, P. M., and Cooper, R. A. 2003. Best-fit intervals and consensus sequences; comparison of the resolving power of traditional biostratigraphy and computer-assisted correlation. Pp. 4994 in Harries, P., ed. High resolution approaches in stratigraphic paleontology. Kluwer Academic, Dordrecht.Google Scholar
Sadler, P. M., and Cooper, R. A. 2004. Calibration of the Ordovician Timescale. Pp. 4851 in Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G., eds. The great Ordovician biodiversification event. Columbia University Press, New York.CrossRefGoogle Scholar
Sadler, P. M.; Cooper, R. A., and Melchin, M. J. 2009. High-resolution, early Paleozoic (Ordovician-Silurian) timescales. Geological Society of America Bulletin 12:887906.Google Scholar
Sepkoski, J. J. 1975. Stratigraphic biases in the analysis of taxonomic survivorship. Paleobiology 1:343355.Google Scholar
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.CrossRefGoogle Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.Google Scholar
StatSoft, Inc. 2007. STATISTICA (data analysis software system), Version 8.0. www.statsoft.com.Google Scholar
Summerhayes, C. P., Emeis, K.-C., Angel, M. V., Smith, R. L., and Zeitzschel, B. 1995. Upwelling in the ocean — modern processes and ancient records. In Emeis, K.-C., Angel, M. V., Smith, R. L., and Zeitzschel, B., eds. Report on the Dahlem workshop on upwelling in the ocean: modern processes and ancient records, Berlin, 1994. Wiley, New York.Google Scholar
Thompson, J. B., Mullins, H. T., Newton, C. R., and Vercoutere, T. L. 1985. Alternative biofacies model for dysaerobic communities. Lethaia 18:167179.Google Scholar
Tucker, R. D., and McKerrow, W. S. 1995. Early Paleozoic chronology: a review in light of new U-Pb zircon ages from Newfoundland and Britain. Canadian Journal of Earth Sciences 32:368379.Google Scholar
Wilde, P. 1991. Oceanography in the Ordovician. Geological Survey of Canada Paper 90–9:283298.Google Scholar
Wilde, P., and Berry, W. B. N. 1986. The role of oceanographic factors in the generation of global bio-events. Lecture Notes in Earth sciences 8:7591.Google Scholar
Wilde, P., Quinby-Hunt, M. S., Berry, W. B. N., and Orth, C. J. 1989. Palaeo-oceanography and biogeography in the Tremadoc (Ordovician) Iapetus Ocean and the origin of the chemostratigraphy of Dictyonema flabelliforme black shales. Geological Magazine 126:1927.Google Scholar
Wilde, P., Berry, W. B. N., and Quinby-Hunt, M. S. 1991. Silurian oceanic and atmospheric circulation and chemistry. In Bassett, M. G., Lane, P. D., and Edwards, D., eds. The Murchison Symposium: proceedings of an international conference on the Silurian System. Special Papers in Palaeontology 44:123143. [Modified for online publication April 1997.] http://www.marscigrp.org/sil91.html Google Scholar
Zhang, Y., Xu, C., and Goldman, D. 2007. Distribution patterns of Early and Mid Ordovician graptolites in South China. Geological Journal 42:315337.Google Scholar
Zima, M. B. 1976. Rasprostranenie graptolitov v paleozojskikh moryakh i tipy graptolitosoderzhashchikh porod. [Distribution of graptolites in Palaeozoic seas and types of graptolite-containing rocks]. Pyatidesyatiletie sovetskij paleontologii i voprosy sistematiki drevnikh organizmov:171179. Nauka, Leningrad.Google Scholar