Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:24:15.403Z Has data issue: false hasContentIssue false

Foraminiferal diversification during the late Paleozoic ice age

Published online by Cambridge University Press:  08 April 2016

John R. Groves
Affiliation:
Department of Earth Science, University of Northern Iowa, Cedar Falls, Iowa 50614–0335. E-mail: john.groves@uni.edu
Wang Yue
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing 210008, China. E-mail: yuewang@nigpas.ac.cn

Abstract

A record of late Paleozoic foraminiferal diversity, origination and extinction frequencies, and provincialism at million-year temporal resolution and species-level taxonomic resolution has been achieved by analyzing composite standard databases. Foraminiferal species diversity increased throughout Mississippian and Pennsylvanian time leading up to its peak at the Pennsylvanian/Permian boundary. Foraminifers then experienced a steep decline in diversity during the Early Permian. Frequencies of origination and extinction broadly tracked changes in global diversity. From Late Mississippian time onward, patterns in total foraminiferal diversity were dominated by fusulinoideans. There is no clear relationship between rates of foraminiferal evolution and the alternating glacial and nonglacial intervals that characterized the late Paleozoic ice age. Rather, high rates of origination and extinction might reflect instability of neritic environments as a consequence of high-frequency, high-amplitude base-level fluctuations (cyclothemic deposition). Further, the advent of algal symbiosis in fusulinoideans was a physiologic innovation that promoted diversification as these symbiont-bearing taxa experimented with morphologic adaptations for partitioning the low-nutrient environments to which they were specialized. Growth to large size and delayed maturation in fusulinoideans might have been enabled by the late Paleozoic hyperoxic atmosphere and the widespread development of oligotrophic, carbonate platform and shelf environments. The late Paleozoic history of foraminiferal diversification was influenced also by closure of the Rheic Ocean beginning in Late Mississippian time. Foraminiferal associations on opposite sides of Pangea exhibited relatively high similarity prior to the closure, but then similarity decreased steadily after destruction of the subequatorial marine corridor. Arctic-Eurasian and North American associations were nearly isolated from one another throughout the main burst of fusulinoidean diversification, so that parallel lineages developed independently in the two regions, resulting in many instances of convergence.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. D. 1954. Desmoinesian fusulinids of northeastern Oklahoma. Oklahoma Geological Survey Circular 31.Google Scholar
Archinal, B. E., Sutherland, P. K., Grayson, R. C. Jr., Douglass, R. C., and Nestell, M. K. 1982. Stop descriptions—northeastern Arbuckle Mountains. In Sutherland, P. K., ed. Lower and Middle Pennsylvanian stratigraphy in south-central Oklahoma. Oklahoma Geological Survey Guidebook 20:1929.Google Scholar
Baesemann, J. F., and Lane, H. R. 1985. Taxonomy and evolution of the genus Rhachistognathus Dunn (Conodonta; Late Mississippian to early Middle Pennsylvanian. In Lane, H. R. and Ziegler, W., eds. Toward a boundary in the middle of the Carboniferous: stratigraphy and paleontology. Courier Forschungsinstitut Senckenberg 74:93136.Google Scholar
Batt, L. S., Montañez, I. P., Isaacson, P., Pope, M. C., Butts, S. H., and Abplanalp, J. 2007. Multi-carbonate component reconstruction of mid-Carboniferous (Chesterian) seawater δ13C. Palaeogeography, Palaeoclimatology, Palaeoecology 256:298318.Google Scholar
Baxter, J. W., and Brenckle, P. L. 1982. Preliminary statement on Mississippian calcareous foraminiferal successions of the midcontinent (U.S.A.) and their correlation to western Europe. Newsletters on Stratigraphy 11:136153.CrossRefGoogle Scholar
Beauchamp, B., and Baud, A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 184:3763.Google Scholar
Bebout, D. G. 1963. Desmoinesian fusulinids of Missouri. Missouri Division of Geological Survey and Water Resources, Report of Investigations 28.Google Scholar
Berner, R. A. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70:56535664.Google Scholar
Berner, R. A., VandenBrooks, J. M., and Ward, P. D. 2007. Oxygen and evolution. Science 316:557558.CrossRefGoogle ScholarPubMed
Bralower, T. J., and Thierstein, H. R. 1984. Low productivity and slow deep water circulation in mid-Cretaceous oceans. Geology 12:614618.Google Scholar
Brenckle, P. L. 1973. Smaller Mississippian and Lower Pennsylvanian calcareous foraminifers from Nevada. Cushman Foundation for Foraminiferal Research Special Publication 11.Google Scholar
Brenckle, P. L. 1977. Foraminifers and other calcareous microfossils from late Chesterian (Mississippian) strata of northern Arkansas. In Sutherland, P. K. and Manger, W. L., eds. Upper Chesterian-Morrowan stratigraphy and the Mississippian-Pennsylvanian boundary in northeastern Oklahoma and northwestern Arkansas. Oklahoma Geological Survey Guidebook 18:7387.Google Scholar
Brenckle, P. L. 1991. Foraminiferal division of the Lower Carboniferous/Mississippian in North America. In Brenckle, P. L. and Manger, W. L., eds. Intercontinental correlation and division of the Carboniferous System. Courier Forschungsinstitut Senckenberg 130:6578. [Imprinted 1990.]Google Scholar
Brenckle, P. L., and Page, W. R. 1997. Post-conference field trip to the Arrow Canyon Range, southern Nevada, U.S.A. Cushman Foundation for Foraminiferal Research Special Publication No. 36(Suppl.).Google Scholar
Brenckle, P. L., Lane, H. R., and Collinson, C. 1974. Progress toward reconciliation of lower Mississippian conodont and foraminiferal zonations. Geology 2:433437.2.0.CO;2>CrossRefGoogle Scholar
Brenckle, P. L., Marshall, F. C., Waller, S. F., and Wilhelm, M. H. 1982. Calcareous microfossils from the Mississippian Keokuk Limestone and adjacent formations, Upper Mississippi River Valley: their meaning for North American and intercontinental correlations. Geologica et Palaeontologica 15:4788.Google Scholar
Buzas, M. A., and Culver, S. J. 1984. Species duration and evolution: benthic foraminifera on the Atlantic continental margin of North America. Science 225:829830.Google Scholar
Cassity, P. E., and Langenheim, R. L. Jr. 1966. Pennsylvanian and Permian fusulinids of the Bird Spring Group from Arrow Canyon, Clark County, Nevada. Journal of Paleontology 40:931968.Google Scholar
Chestnut, D. R. Jr. 1991. Timing of Alleghenian tectonics determined by central Appalachian Basin analysis. Southeastern Geology 31:203221.Google Scholar
Clopine, W. W. 1992. Lower and Middle Pennsylvanian fusulinid biostratigraphy of southern New Mexico and westernmost Texas. New Mexico Bureau of Mines and Mineral Resources Bulletin 143.Google Scholar
Crowell, J. C. 1999. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America Memoir 192.Google Scholar
Dallmeyer, R. D., Wright, J. E., Secor, D. T., and Snoke, A. W. 1986. Character of the Alleghenian orogeny in the southern Appalachians, Part II. Geochronological constraints on the tectonothermal evolution of the eastern Piedmont in South Carolina. Geological Society of America Bulletin 97:13291344.Google Scholar
Douglass, R. C. 1977. The development of fusulinid biostratigraphy. Pp. 463482in Kauffman, and Hazel, 1977.Google Scholar
Douglass, R. C. 1987. Fusulinid biostratigraphy and correlations between the Appalachian and Eastern Interior basins. U.S. Geological Survey Professional Paper 1451.Google Scholar
Douglass, R. C., and Nestell, M. K. 1984. Fusulinids of the Atoka Formation, Lower-Middle Pennsylvanian, south-central Oklahoma. Pp. 1940in Sutherland, and Manger, 1984.Google Scholar
Dunbar, C. O., and Henbest, L. G. 1942. Pennsylvanian Fusulinidae of Illinois (with a section on stratigraphy byWeller, J. M., Henbest, L. G., and Dunbar, C. O.). Illinois State Geological Survey Bulletin 67.Google Scholar
Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J. 2008. Stratigraphic imprint of the Late Paleozoic ice age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, London 165:129140.CrossRefGoogle Scholar
Fitzgerald, P. C. and Carlson, S. J. 2006. Examining the latitudinal diversity gradient in Paleozoic terebratulide brachiopods: should singleton data be removed? Paleobiology 32:367386.Google Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H., and Wing, S. L., eds. Deep Time: Paleobiology's Perspective: Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Foote, M. 2000b. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26:578605.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.CrossRefGoogle Scholar
Frakes, L. A., Francis, J. E., and Syktus, J. L. 1992. Climate modes of the Phanerozoic. Cambridge University Press, Cambridge.Google Scholar
García-Bellido, D. C., and Rodriguez, S. 2005. Palaeobiogeographical relationships of poriferan and coral assemblages during the Late Carboniferous and the closure of the western Palaeotethys Sea-Panthalassan Ocean connection. Palaeogeography, Palaeoclimatology, Palaeoecology 219:321331.Google Scholar
Gradstein, F.M., Ogg, J. G., Smith, A. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P., Hinnov, L. A., House, M. R., Lourens, L., Luterbacher, H. P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold, J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkhuis, H., Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H., Laskar, J., Monechi, S., Plumb, K. A., Powell, J., Raffi, I., Röhl, U., Sadler, P., Sanfilippo, A., Schmitz, B., Shackleton, N. J., Shields, G. A., Strauss, H., Van Dam, J., van Kolfschoten, T., Veizer, J., and Wilson, D. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Graham, J. B., Dudley, R., Aguilar, N. M., and Gans, C. 1995. Implications of the Late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117120.Google Scholar
Grayson, R. C. Jr. 1984. Morrowan and Atokan (Pennsylvanian) conodonts from the northeastern margin of the Arbuckle Mountains, southern Oklahoma. Pp. 4164in Sutherland, and Manger, 1984.Google Scholar
Grossman, E. L., Bruckschen, P., Mii, H., Chuvashov, B. I., Yancey, T. E., and Veizer, J. 2002. Carboniferous paleoclimate and global change: isotopic evidence from the Russian Platform. pp. 6171in Carboniferous stratigraphy and paleogeography in Eurasia. Institute of Geology and Geochemistry, Russian Academy of Sciences, Urals Branch, Ekaterinburg.Google Scholar
Groves, J. R. 1983. Calcareous foraminifers and algae from the type Morrowan (Lower Pennsylvanian) region of northeastern Oklahoma and northwestern Arkansas. Oklahoma Geological Survey Bulletin 133.Google Scholar
Groves, J. R. 1984. Foraminifers and biostratigraphy of the Arco Hills, Bluebird Mountain and lower Snaky Canyon formations (Mid-Carboniferous) of east-central Idaho. Journal of Foraminiferal Research 14:282302.CrossRefGoogle Scholar
Groves, J. R. 1988. Calcareous foraminifers from the Bashkirian stratotype (Middle Carboniferous, south Urals) and their significance for intercontinental correlations and the evolution of the Fusulinidae. Journal of Paleontology 62:368399.Google Scholar
Groves, J. R. 1991. Fusulinacean biostratigraphy of the Marble Falls Limestone (Pennsylvanian), western Llano region, central Texas. Journal of Foraminiferal Research 21:6795.Google Scholar
Groves, J. R. 1992. Stratigraphic distribution of non-fusulinacean foraminifers in the Marble Falls Limestone (Lower-Middle Pennsylvanian), western Llano region, central Texas. In Sutherland, P. K. and Manger, W. L., eds. Recent advances in Middle Carboniferous biostratigraphy. Oklahoma Geological Survey Circular 94:145162.Google Scholar
Groves, J. R. 2000. Suborder Lagenina and other smaller foraminifers from uppermost Pennsylvanian–Lower Permian rocks of Kansas and Oklahoma. Micropaleontology 46:285326.Google Scholar
Groves, J. R. 2005. Fusulinid wall structure in the Profusulinella-Fusulinella evolutionary transition. In Barrick, J. E. and Lane, H. R., eds. A standing ovation: papers in honor of Gilbert Klapper. Bulletins of American Paleontology 369:199218.Google Scholar
Groves, J. R., and Boardman, D. R. II. 1999. Calcareous smaller foraminifers from the Lower Permian Council Grove Group near Hooser, Kansas. Journal of Foraminiferal Research 29:243262.Google Scholar
Groves, J. R., and Lee, A. 2008. Accelerated rates of foraminiferal origination and extinction during the Late Paleozoic ice age. Journal of Foraminiferal Research 38:7484.Google Scholar
Groves, J. R., Nassichuk, W. W., Lin, Rui, and Pinard, S. 1994. Middle Carboniferous fusulinacean biostratigraphy, northern Ellesmere Island (Sverdrup Basin, Canadian Arctic Archipelago). Geological Survey of Canada Bulletin 469.Google Scholar
Groves, J. R., Kulagina, E. I., and Villa, E. 2007. Diachronous appearances of the Pennsylvanian fusulinid Profusulinella in Eurasia and North America. Journal of Paleontology 81:227237.Google Scholar
Grubbs, R. K. 1984. Conodont platform elements from the Wapanucka and Atoka formations (Morrowan-Atokan) of the Mill Creek Syncline, central Arbuckle Mountains, Oklahoma. Pp. 6580in Sutherland, and Manger, 1984.Google Scholar
Grubbs, R. K., Sutherland, P. K., Douglass, R. C., and Nestell, M. K. 1982. Stop descriptions—Mill Creek Syncline. In Sutherland, P. K., ed. Lower and Middle Pennsylvanian stratigraphy in south-central Oklahoma. Oklahoma Geological Survey Guidebook 20:3037.Google Scholar
Hallock, P. 1981. Algal symbiosis: a mathematical analysis. Marine Biology 62:249255.Google Scholar
Hallock, P. 1985. Why are larger foraminifera large? Paleobiology 11:195208.CrossRefGoogle Scholar
Hallock, P. 1987. Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457471.Google Scholar
Hallock, P. 1999. Symbiont-bearing foraminifera. Pp. 123140in Sen Gupta, B. K., ed. Modern foraminifera. Kluwer Academic, Dordrecht.Google Scholar
Hallock, P. 2000. Symbiont-bearing foraminifera: harbingers of global change? In Lee, J. J. and Hallock, P., eds. Advances in the biology of foraminifera. Micropaleontology 46(Suppl. 1):95114.Google Scholar
Hallock, P., Premoli Silva, I., and Boersma, A. 1991. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 83:4964.CrossRefGoogle Scholar
Hammer, Ø., and Harper, D. 2006. Paleontological data analysis. Blackwell Publishing, Maiden, Mass.Google Scholar
Heckel, P. H. 2006. Latest calibration of Middle to Late Pennsylvanian time scale using succession of midcontinent cyclothems. Newsletter on Carboniferous Stratigraphy 24:3539.Google Scholar
Heckel, P. H. 2008. Pennsylvanian cyclothems in midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In Fielding, C. R., Frank, T. D. and Isbell, J. L., eds. Resolving the Late Paleozoic ice age in time and space. Geological Society of America Special Paper 441:275289.Google Scholar
Heckel, P. H., Alekseev, A. S., Barrick, J. E., Boardman, D. R., Goreva, N. V., Nemyrovska, T. I., Ueno, K., Villa, E., and Work, D. M. 2007. Cyclothem [“digital”] correlation and biostratigraphy across the global Moscovian-Kasimovian-Gzhelian stage boundary interval (Middle-Upper Pennsylvanian) in North America and eastern Europe. Geology 35:607610.Google Scholar
Hoare, R. D., and Sturgeon, M. T. 1994. Small fusulinids from the Pennsylvanian of Ohio. Paleontological Society Memoir 38(Suppl. to Journal of Paleontology 68, No. 5).Google Scholar
Hoare, R. D., and Sturgeon, M. T. 1998. Pennsylvanian endothyroid foraminifera from the Appalachian Basin. Journal of Paleontology 72:405418.Google Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):148168.Google Scholar
Hottinger, L. 1987. Conditions for generating carbonate platforms. Memorie della Società Geologica Italiana 40:265271.Google Scholar
Isbell, J. L., Miller, M. F., Wolfe, K. L., and Lenaker, P. A. 2003. Timing of Late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of Northern Hemisphere cyclothems? In Chan, M. A. and Archer, A. W., eds. Extreme depositional environments: mega end members in geologic time. Geological Society of America Special Paper 370:524.Google Scholar
Joachimski, M. M., von Bitter, P. H., and Buggisch, W. 2006. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology 34:277280.Google Scholar
Kalvoda, J. 2002. Late Devonian–Early Carboniferous foraminiferal fauna: zonations, evolutionary events, paleobiogeography and tectonic implications. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis (Geologia) 39.Google Scholar
Kauffman, A. E., and Roth, R. I. 1966. Upper Pennsylvanian and Lower Permian fusulinids from north-central Texas. Cushman Foundation for Foraminiferal Research Special Publication 8.Google Scholar
Kauffman, E. G., and Hazel, J. E., eds. 1977. Concepts and methods of biostratigraphy. Dowden, Hutchison and Ross, Stroudsburg, Penn.Google Scholar
King, W. E. 1988. Permian fusulinids from the Conoco Inc. 33–1 core, Kay County, Oklahoma. In Morgan, W. A. and Babcock, J. A., eds. Permian rocks of the midcontinent. Midcontinent SEPM Special Publication 1:213224.Google Scholar
Korte, C., Jasper, T., Kozur, H. W., and Veizer, J. 2005. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 224:333351.Google Scholar
Kottlowski, F. E., and Stewart, W. J. 1970. The Wolfcampian Joyita Uplift in central New Mexico. New Mexico Bureau of Mines and Mineral Resources Memoir 23:135.Google Scholar
Lambert, L. L. 1992. Atokan and basal Desmoinesian conodonts from central Iowa, reference area for the Desmoinesian Stage. In Sutherland, P. K. and Manger, W. L., eds. Recent advances in Middle Carboniferous biostratigraphy: a symposium. Oklahoma Geological Survey Circular 94:111123.Google Scholar
Langer, M. R., and Hottinger, L. 2000. Biogeography of selected “larger” foraminifera. In Lee, J. J. and Hallock, P., eds. Advances in the biology of foraminifera. Micropaleontology 46(Suppl. 1):105126.Google Scholar
Lane, H. R., and Brenckle, P. L. 2005. Type Mississippian subdivisions and biostratigraphic succession. In Heckel, P. H., ed. Stratigraphy and biostratigraphy of the Mississippian Subsystem (Carboniferous System) in its type region, the Mississippi River Valley of Illinois, Missouri, and Iowa. Illinois State Geological Survey Guidebook 34:76105.Google Scholar
Lane, H. R., Baesemann, J. F., Brenckle, P. L., and West, R. R. 1985. Arrow Canyon, Nevada—a potential mid-Carboniferous boundary stratotype. Dixième Congrès International de Stratigraphie et de Géologie du Carbonifère, Compte Rendu 4:429439.Google Scholar
Lane, H. R., Brenckle, P. L., Baesemann, J. F., and Richards, B. 1999. The IUGS boundary in the middle of the Carboniferous: Arrow Canyon, Nevada, USA. Episodes 22:272283.Google Scholar
Langenheim, R. L. Jr., Webster, G. D., and Weibel, C. P. 1984. Atokan rocks of the Bird Spring Group, Arrow Canyon, Clark County, Nevada. Pp. 133156in Sutherland, and Manger, 1984.Google Scholar
Lee, J. J., and Hallock, P. 1987. Algal symbiosis as the driving force in the evolution of larger foraminifera. Annals of the New York Academy of Science 503:330347.Google Scholar
Lee, J. J., McEnery, M. E., Kahn, E. G., and Schuster, F. L. 1979. Symbiosis and the evolution of larger foraminifera. Micropaleontology 25:118140.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1987. Foraminiferal genera and their classification. Van Nostrand Reinhold, New York. [Imprinted 1988.]Google Scholar
Magginetti, R. T., Stevens, C. H., and Stone, P. 1988. Early Permian fusulinids from the Owens Valley Group, east-central California. Geological Society of America Special Paper 217.Google Scholar
Maloney, M. M., Hoare, R. D., and Sturgeon, M. T. 1988. Pennsylvanian palaeotextulariid foraminifera from the Appalachian Basin. Journal of Paleontology 62:724730.Google Scholar
Mamet, B. L. 1977. Foraminiferal zonation of the Lower Carboniferous: methods and stratigraphic implications. Pp. 445462in Kauffman, and Hazel, 1977.Google Scholar
Mann, K. O., and Lane, H. R., eds. 1995. Graphic correlation. SEPM Society for Sedimentary Geology Special Publication 53.Google Scholar
Marshall, F. C. 1969. Lower and Middle Pennsylvanian fusulinids from the Bird Spring Formation near Mountain Springs Pass, Clark County, Nevada. Brigham Young University Geology Studies 16:97154.Google Scholar
Menning, M., and 19 others. 2006. Global time scale and regional stratigraphic reference scales of central and west Europe, east Europe, Tethys, south China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology 240:318372.CrossRefGoogle Scholar
Mii, H., Grossman, E. L., and Yancey, T. E. 1999. Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America Bulletin 111:960973.Google Scholar
Mii, H., Grossman, E. L., Yancey, T. E., Chuvashov, B., and Egorov, A. 2001. Isotope records of brachiopod shells from the Russian Platform: evidence for the onset of mid-Carboniferous glaciation. Chemical Geology 175:133147.CrossRefGoogle Scholar
Miller, F. X. 1977. The graphic correlation method in biostratigraphy. Pp. 165186in Kauffman, and Hazel, 1977.Google Scholar
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M. C. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315:8791.Google Scholar
Nestell, G. P., and Nestell, M. K. 2006. Middle Permian (Late Guadalupian) foraminifers from Dark Canyon, Guadalupe Mountains, New Mexico. Micropaleontology 52:150.Google Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.Google Scholar
Parente, M., Frijia, G., Di Lucia, M., Jenkyns, H. C., Woodfine, R. G., and Baroncini, F. 2008. Stepwise extinction of larger foraminifers at the Cenomanian-Turonian boundary: a shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 36:715718.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Powell, M. G. 2005. Climatic basis for sluggish macroevolution during the late Paleozoic ice age. Geology 33:381384.Google Scholar
Reitlinger, E. A. 1975. Paleozoogeography of Visean and early Namurian basins based on foraminifers. Akademiya Nauk SSSR, Voprosy Mikropaleontologii 18:320. [Russian.]Google Scholar
Rich, M. 1980. Carboniferous calcareous foraminifera from northeastern Alabama, south-central Tennessee, and northwestern Georgia. Cushman Foundation for Foraminiferal Research Special Publication 18.Google Scholar
Ross, C. A. 1963. Standard Wolfcampian Series (Permian), Glass Mountains, Texas. Geological Society of America Memoir 88.Google Scholar
Ross, C. A. 1967. Development of fusulinid (Foraminiferida) faunal realms. Journal of Paleontology 41:13411354.Google Scholar
Ross, C. A. 1969a. Paleoecology of Triticites and Dunbarinella in Upper Pennsylvanian strata of Texas. Journal of Paleontology 43:298311.Google Scholar
Ross, C. A. 1969b. Middle and Upper Pennsylvanian fusulinaceans, Gila Mountains, Arizona. Journal of Paleontology 43:14051422.Google Scholar
Ross, C. A. 1974. Evolutionary and ecological significance of large calcareous Foraminiferida (Protozoa), Great Barrier Reef. Second International Coral Reef Symposium, Proceedings 1:327333.Google Scholar
Ross, C. A. 1977. Calcium carbonate fixation by large reef-dwelling foraminifera. American Association of Petroleum Geologists, Studies in Geology 4:219230.Google Scholar
Ross, C. A. 1982. Paleobiology of fusulinaceans. In Mamet, B. and Copeland, M. J., eds. Third North American Paleontological Convention (Montreal), Proceedings 2:441445.Google Scholar
Ross, C. A. and Ross, J. R. P. 1981. Biogeographical influences on Late Paleozoic faunal distributions. Pp. 199212in Larwood, G. P. and Nielsen, C., eds. Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Ross, C. A. and Ross, J. R. P. 1985. Carboniferous and Early Permian biogeography. Geology 13:2730.Google Scholar
Ross, C. A. and Ross, J. R. P. 1987. Late Paleozoic sea levels and depositional sequences. In Ross, C. A. and Haman, D., eds. Timing and depositional history of eustatic sequences: constraints on seismic stratigraphy. Cushman Foundation for Foraminiferal Research Special Publication 24:137168.Google Scholar
Ross, C. A., and Sabins, F. F. Jr. 1965. Early and Middle Pennsylvanian fusulinids from southeast Arizona. Journal of Paleontology 39:173209.Google Scholar
Ross, C. A., and Tyrrell, W. W. Jr. 1965. Pennsylvanian and Permian fusulinids from the Whetstone Mountains, southeast Arizona. Journal of Paleontology 39:615635.Google Scholar
Royer, D. L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta 70:56655675.Google Scholar
Rui, Lin, Ross, C. A., and Nassichuk, W. W. 1991. Upper Moscovian (Desmoinesian) fusulinaceans from the type section of the Nansen Formation, Ellesmere Island, Arctic Archipelago. Geological Survey of Canada Bulletin 418.Google Scholar
Sabins, F. F. Jr., and Ross, C. A. 1963. Late Pennsylvanian-Early Permian fusulinids from southeast Arizona. Journal of Paleontology 37:323356.Google Scholar
Saltzman, M. R. 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–lower Osagean), western United States: implications for seawater chemistry and glaciation. Geological Society of America Bulletin 114:96108.Google Scholar
Saltzman, M. R. 2002. 2003. Late Paleozoic ice age: oceanic gateway or pCO2? Geology 31:151154.Google Scholar
Saltzman, M. R., Gonzalez, L. A., and Lohmann, K. C. 2000. Earliest Carboniferous cooling step triggered by the Antler Orogeny? Geology 28:347350.Google Scholar
Saltzman, M. R., Groessens, E., and Zhuralev, A. 2004. Carbon cycle models based on extreme changes in δ13C: an example from the Lower Mississippian. Palaeogeography, Palaeoclimatology, Palaeoecology 213:359377.Google Scholar
Sanderson, G. A., and Verville, G. J. 1988. Permian fusulinids from the Amoco Production Company No. 1 Eldon Hargrave core, Riley County, Kansas. In Morgan, W. A. and Babcock, J. A., eds. Permian rocks of the midcontinent. Midcontinent SEPM Special Publication 1:205212.Google Scholar
Sanderson, G. A., Verville, G. J., Groves, J. R., and Wahlman, G. P. 2001. Fusulinaceans from the Virgilian Stage (Pennsylvanian) of Kansas. Journal of Paleontology 75:883887.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363.Google Scholar
Shaw, A. B. 1964. Time in stratigraphy. McGraw-Hill, New York.Google Scholar
Skipp, B. 1969. Foraminifera. Chapter V in McKee, E. D. and Gutschick, R. C., eds. History of the Redwall Limestone of northern Arizona. Geological Society of America Memoir 114:173256.Google Scholar
Skipp, B., Baesemann, J. F., and Brenckle, P. L. 1985. A reference area for the Mississippian-Pennsylvanian (mid-Carboniferous) boundary in east-central Idaho, U.S.A. Dixième Congrès International de Stratigraphie et de Géologie du Carbonifère, Compte Rendu 4:403428.Google Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74:93114.CrossRefGoogle Scholar
Sloss, L. L. 1964. Tectonic cycles of the North American craton. In Merriam, D. F., ed. Symposium on cyclic sedimentation. Kansas Geological Survey Bulletin 169:449460.Google Scholar
Smith, L. B. Jr., and Read, J. F. 2000. Rapid onset of Late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the midcontinent, United States. Geology 28:279282.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Stanley, S. M., and Powell, M. G. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31:877880.Google Scholar
Stevens, C. H. 1969. Water depth control of fusulinid distribution. Lethaia 2:121132.Google Scholar
Stewart, W. J. 1970. Fusulinids of the Joyita Hills, Socorro County, central New Mexico. New Mexico Bureau of Mines and Mineral Resources Memoir 23:3682.Google Scholar
Sutherland, P. K., and Manger, W. L., eds. 1984. The Atokan Series (Pennsylvanian) and its boundaries: a symposium. Oklahoma Geological Survey Bulletin 136.Google Scholar
Sutherland, P. K., Archinal, B. E., and Grubbs, R. K. 1982. Morrowan and Atokan (Pennsylvanian) stratigraphy in the Arbuckle Mountains area, Oklahoma. In Sutherland, P. K., ed. Lower and Middle Pennsylvanian stratigraphy in south-central Oklahoma. Oklahoma Geological Survey Guidebook 20:118.Google Scholar
Thompson, M. L. 1948. Studies of American fusulinids. University of Kansas Paleontological Contributions, Protozoa, Article 1.Google Scholar
Thompson, M. L. 1954. American Wolfcampian fusulinids. University of Kansas Paleontological Contributions, Protozoa, Article 5.Google Scholar
Thompson, M. L. 1957. Northern midcontinent Missourian fusulinids. Journal of Paleontology 31:289328.Google Scholar
Ueno, K. 2006. The Permian antitropical fusulinoidean genus Monodiexodina: distribution, taxonomy, paleobiogeography and paleoecology. Journal of Asian Earth Sciences 26:380404.Google Scholar
Vai, G. B. 2003. Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian. Palaeogeography, Palaeoclimatology, Palaeoecology 196:125155.Google Scholar
Villa, E., and Wahlman, G. P. 2007. Late Pennsylvanian fusulinoidean paleobiogeography. Pp. 497511in Wong, Th. E. ed. Proceedings of the XV International Congress on Carboniferous and Permian, Utrecht, the Netherlands, 10–16 August 2003. Royal Netherlands Academy of Arts and Sciences, Amsterdam.Google Scholar
Waddell, D. E. 1966. Ardmore Basin fusulinids. Oklahoma Geological Survey Bulletin 113.Google Scholar
Wardlaw, B. R., Grant, R. E., and Rohr, D. M., eds. 2000. The Guadalupian Symposium. Smithsonian Contributions to the Earth Sciences 32.Google Scholar
Wilde, G. L. 2000. Formal Middle Permian (Guadalupian) Series: a Fusulinacean perspective. Pp. 89100in Wardlaw, et al. 2000.Google Scholar
Wilde, G. L., and Rudine, S. F. 2000. Late Guadalupian biostratigraphy and fusulinid faunas, Altuda Formation, Brewster County, Texas. Pp. 343371in Wardlaw, et al. 2000.Google Scholar
Wilde, G. L., Rudine, S. F., and Lambert, L. L. 1999. Formal designation: Reef Trail Member, Bell Canyon Formation, and its significance for recognition of the Guadalupian-Lopingian boundary. In Geologic framework of the Capitan Reef. SEPM Special Publication 65:6383.Google Scholar
Williams, T. E. 1966. Permian Fusulinidae of the Franklin Mountains, New Mexico–Texas. Journal of Paleontology 40:11421156.Google Scholar
Yang, X.-N., Liu, J.-R., Zhu, L.-M., and Shi, G.-J. 2005. Early Permian bioevent in the fusulinacean fauna of South China. Lethaia 38:116.Google Scholar
Yang, Z., and Yancey, T. E. 2000. Fusulinid biostratigraphy and paleontology of the Middle Permian (Guadalupian) strata of the Glass Mountains and Del Norte Mountains, west Texas. Pp. 185259in Wardlaw, et al. 2000.Google Scholar
Yuferev, O. V. 1973. Carboniferous deposits of the Siberian biogeographical realm. Akademiya Nauk SSSR, Sibirskoye Otdelenie, Institut Geologii i Geofiziki, 162. [Russian.]Google Scholar
Zeller, D. E. 1968. The stratigraphic succession in Kansas. Kansas Geological Survey Bulletin 189.Google Scholar