Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T08:04:30.272Z Has data issue: false hasContentIssue false

Generation times and the Quaternary evolution of reef-building corals

Published online by Cambridge University Press:  08 April 2016

D. C. Potts*
Affiliation:
Biology Department and Center for Coastal Marine Studies, University of California, Santa Cruz, California 95064

Abstract

Faunal stasis among Indo-Pacific reef-building corals is explained as the result of chronic environmental disruptions preventing evolutionary processes from approaching completion since the Late Pliocene. The model assumes shallow reefal habitats (<20 m) on the continental shelves are major sites of scleractinian evolution and explores ecological and evolutionary consequences of high-frequency sea-level fluctuations and their associated transgression-regression cycles. Because single generations, dominated by a few large clonal genotypes, may persist indefinitely, local populations may not have experienced enough generations to approach evolutionary equilibrium with their environments during the estimated average duration (≈3200 yr) of existence of shallow habitats. Persistent consequences of chronic evolutionary disturbance may be the extensive intraspecific variation so characteristic of the dominant genera of shallow Indo-Pacific corals and the apparent paucity of recently evolved endemic species. The same disturbances may have accelerated speciation rates among reefal organisms with much shorter generation times.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adey, W. H. 1978. Coral reef morphogenesis: a multidimensional model. Science. 202:831837.Google Scholar
Alstad, D. N. and Edmonds, G. F. Jr. 1983. Selection, outbreeding depression and the sex ratio of scale insects. Science. 220:9395.Google Scholar
Andrews, J. C. and Gentien, P. 1982. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin's question? Mar. Ecol. Prog. Ser. 8:257269.Google Scholar
Anon. 1971-75. Karta Mira (World map). Various sheets, 1:2,500,000. Published by cartographic services of Bulgaria and Czechoslovakia.Google Scholar
Birkeland, C. 1982. Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Mar. Biol. 69:175185.Google Scholar
Bothwell, A. M. 1981. Fragmentation, a means of asexual reproduction and dispersal in the coral genus Acropora (Scleractinia: Astrocoeniida; Acroporidae)—a preliminary report. Proc. 4th Int. Coral Reef Symp. 2:137144.Google Scholar
Brakel, W. H. 1977. Corallite variation in Porites and the species problem in corals. Proc. 3d Int. Coral Reef Symp. 1:457462.Google Scholar
Briggs, J. C. 1966. Zoogeography and evolution. Evolution. 20:282289.Google Scholar
Briggs, J. C. 1974. Marine Zoogeography. 475 pp. McGraw-Hill; New York.Google Scholar
Carson, H. L. 1968. The population flush and its genetic consequences. Pp. 123137. In: Lewontin, R. C., ed. Population Biology and Evolution.Google Scholar
Chappell, J. 1974. Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. Geol. Soc. Am. Bull. 85:553570.Google Scholar
Chappell, J. 1980. Coral morphology, diversity and reef growth. Nature. 286:249252.Google Scholar
Chappell, J. 1981. Relative and average sea level changes, and endo-, epi-, and exogenic processes on the earth. In: Sea Level, Ice, and Climatic Change. Int. Ass. Hydrol. Sci. Publ. 131:411430.Google Scholar
Charlesworth, B. 1980. Evolution in age-structured populations. 300 pp. Cambridge Univ. Press; Cambridge.Google Scholar
Chase, T. E., Menard, H. W., and Mammerickx, J. 1970. Bathymetry of the North Pacific (with disgrammatic abyssal topography). IMR Tech. Rept. Ser. TR-6-15, Scripps Inst. Oceanogr.Google Scholar
CLIMAP Project Members. 1976. The surface of the ice-age earth. Science. 191:11311137.Google Scholar
Cole, L. C. 1954. The population consequences of life history phenomena. Quart. Rev. Biol. 99:103137.Google Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science. 199:13021310.Google Scholar
Cook, L. M. 1971. Coefficients of Natural Selection. 207 pp. Hutchinson; London.Google Scholar
Cook, R. E. 1983. Clonal plant populations. Am. Sci. 71:244253.Google Scholar
Dana, T. F. 1975. Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33:355374.Google Scholar
Davis, G. E. 1982. A century of natural change in coral distribution at the Dry Tortugas: a comparison of reef maps from 1881 and 1976. Bull. Mar. Sci. 32:608623.Google Scholar
Dodge, R. E., Fairbanks, R. G., Benninger, L. K., and Maurrasse, F. 1983. Pleistocene sea levels from raised coral reefs of Haiti. Science. 219:14231425.Google Scholar
Done, T. J. 1982. Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs. 1:95107.Google Scholar
Druffel, E. M. 1982. Banded corals: changes in oceanic carbon-14 during the Little Ice Age. Science. 218:1319.Google Scholar
Dustan, P. 1979. Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bull. Mar. Sci. 29:7995.Google Scholar
Emiliani, C. 1982. Extinctive evolution: extinctive and competitive evolution combine into a unified model of evolution. J. Theor. Biol. 97:1333.Google Scholar
Fischer, A. G. 1960. Latitudinal variations in organic diversity. Evolution. 14:6481.Google Scholar
Foster, A. B. 1979. Phenotypic plasticity in the reef corals Montastrea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J. Exp. Mar. Biol. Ecol. 39:2554.Google Scholar
Foster, A. B. 1980. Environmental variation in skeletal morphology within the Caribbean reef corals Montastrea annularis and Siderastrea siderea. Bull. Mar. Sci. 30:678709.Google Scholar
Frost, S. H. 1977. Cenozoic reef systems of Caribbean—prospects for paleoecologic synthesis. Pp. 93110. In: Frost, S. H., Weiss, M. P. and Saunders, J. B., eds. Reefs and Related Carbonates— Ecology and Sedimentology. Am. Assoc. Petrol. Geol. Stud. Geol. 4.Google Scholar
Goreau, T. F. 1969. Post Pleistocene urban renewal in coral reefs. Micronesica. 5:323326.Google Scholar
Gorshkov, S. G., ed. 1976. World Ocean Atlas. I. Pacific Ocean. Permagon; Oxford.Google Scholar
Grassle, J. F. 1973. Variety in coral reef communities. Pp. 247270. In: Jones, O. A. and Endean, R., eds. Biology and Geology of Coral Reefs. Vol. 2. Biology 1. Academic Press; New York.Google Scholar
Harper, J. L. 1977. Population biology of plants. Academic Press; London.Google Scholar
Heck, K. L. and McCoy, E. D. 1978. Long-distance dispersal and reef-building corals of the eastern Pacific. Mar. Biol. 48:349356.Google Scholar
Herman, Y. 1981. Causes of massive biotic extinctions and explosive evolutionary diversification throughout Phanerozoic time. Geology. 9:104108.Google Scholar
Highsmith, R. C. 1982. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7:207226.Google Scholar
Hopley, D. 1982. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs. 453 pp. Wiley-Inter-science; New York.Google Scholar
Hughes, T. P. and Jackson, J. B. C. 1980. Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209:713715.Google Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology. 6:397407.Google Scholar
Kojis, B. L. and Quinn, N. J. 1981. Aspects of sexual reproduction and larval development in the shallow water hermatypic coral, Goniostrea australensis (Edwards and Haime, 1857). Bull. Mar. Sci. 31:558573.Google Scholar
Levin, D. A. 1978. Some genetic consequences of being a plant. Pp. 189212. In: Brussard, P. F., ed. Ecological Genetics: The Interface. Springer Verlag; New York, Heidelberg, Berlin.Google Scholar
Lewis, J. B. 1974. Settlement and growth factors influencing the contagious distribution of some Atlantic reef corals. Proc. 2d Int. Coral Reef Symp. 2:201206.Google Scholar
Mammerickx, J., Fisher, R. L., Emmel, F.J., and Smith, S. M. 1977. Bathymetry of the east and southeast Asian seas. Geol. Soc. Am., Map and Chart Ser. MC-17.Google Scholar
Maragos, J. E. 1972. A study of the ecology of Hawaiian reef corals. Ph.D. diss.Univ. Hawaii. 292 pp.Google Scholar
Menard, H. W. 1983. Insular erosion, isostacy and subsidence. Science. 220:913918.Google Scholar
McCoy, E. D. and Heck, K. L. Jr. 1976. Biogeography of corals, seagrasses and mangroves: an alternative to the center of origin concept. Syst. Zool. 25:201210.Google Scholar
Neigel, J. E. and Avise, J. C. 1983. Clonal diversity and population structure in a reef-building coral, Acropora cervicornis: self-recognition analysis and demographic interpretation. Evolution. 37:437453.Google Scholar
Newell, N. D. 1971. An outline history of tropical organic reefs. Am. Mus. Novit. 2465:137.Google Scholar
Nozaki, Y., Rye, D. M., Turekian, K. K., and Dodge, R. E. 1978. A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophys. Res. Lett. 5:825828.Google Scholar
Pollard, D. 1982. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature. 296:334338.Google Scholar
Potts, D. C. 1976. Growth interactions among morphological variants of the coral Acropora palifera. Pp. 7988. In: Mackie, G. O., ed. Coelenterate Ecology and Behavior. Plenum; New York.Google Scholar
Potts, D. C. 1977. Suppression of coral populations by filamentous algae within damselfish territories. J. Exp. Mar. Biol. Ecol. 28:207216.Google Scholar
Potts, D. C. 1978. Differentiation in coral populations. Atoll Res. Bull. 220:5574.Google Scholar
Potts, D. C. 1983. Evolutionary disequilibrium among Indo-Pacific corals. Bull. Mar. Sci. 33:619632.Google Scholar
Potts, D. C.Natural selection in experimental populations of reef-building corals (Scleractinia). Evolution. (in press).Google Scholar
Purdy, E. G. 1974. Reef configurations: cause and effect. Pp. 976. In: Laporte, L. F., ed. Reefs in Time and Space. Soc. Econ. Paleontol. Mineral. Spec. Pub. 18.Google Scholar
Rogers, C. S., Suchanek, T. H., and Pecora, F. A. 1982. Effects of hurricanes David and Frederic (1979) on shallow Acropora palmata reef communities: St. Croix, U.S. Virgin Islands. Bull. Mar. Sci. 32:532548.Google Scholar
Rosen, B. R. 1971. The distribution of reef coral genera in the Indian Ocean. Symp. Zool. Soc. Lond. 28:263299.Google Scholar
Rosen, B. R. 1981. The tropical high diversity enigma—the corals' eye view. Pp. 103129. In Forey, P. L., ed. The Evolving Biosphere. Brit. Mus. (Nat. Hist.) and Cambridge Univ. Press; Cambridge and London.Google Scholar
Rosen, B. R. and Taylor, J. D. 1969. Reef coral from Aldabra: new mode of reproduction. Science. 166:119121.Google Scholar
Roy, B. C. and Kaneko, K. 1963. Mineral distribution map of Asia and the Far East. United Nations. ECAFE.Google Scholar
Sammarco, P. W. 1982. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar. Ecol. Prog. Ser. 10:5765.Google Scholar
Savin, S. M., Douglas, R. G., and Stehli, F. G. 1975. Tertiary marine paleotemperatures. Geol. Soc. Am. Bull. 86:14991510.Google Scholar
Shackleton, N. J. and Opdyke, N. D. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Res. 3:3955.Google Scholar
Shackleton, N. J. and Opdyke, N. D. 1977. Oxygen isotope and paleomagnetic evidence for early Northern Hemisphere glaciation. Nature. 270:216219.Google Scholar
Shinn, E. A. 1976. Coral reef recovery in Florida and the Persian Gulf. Envir. Geol. 1:241254.Google Scholar
Smith, S. V. 1978. Coral-reef area and the contributions of reefs to processes and resources of the world's oceans. Nature. 273:225226.Google Scholar
Smith, S. V. and Harrison, J. T. 1977. Calcium carbonate production of the Mare incognitum, the upper windward reef slope, at Enewetak Atoll. Science. 197:556559.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco.Google Scholar
Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51:347.CrossRefGoogle ScholarPubMed
Stearns, S. C. 1977. The evolution of life history traits: a critique of the theory and a review of the data. Ann. Rev. Ecol. Syst. 8:145171.Google Scholar
Stehli, F. G. and Wells, J. W. 1971. Diversity and age patterns in hermatypic corals. Syst. Zool. 20:115126.Google Scholar
Stoddart, D. R. 1969. Ecology and morphology of recent coral reefs. Biol. Rev. 44:433498.Google Scholar
Stoddart, D. R. 1973. Coral reefs: the last two million years. Geography. 58:313323.Google Scholar
Stoddart, J. 1983. Asexual production of planulae in the coral Pocillopora damicornis. Mar. Biol. 76:279284.Google Scholar
Vasek, F. C. 1980. Creosote bush: long-lived clones in the Mojave desert. Am. J. Bot. 67:246255.Google Scholar
Vaughan, T. W. and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Sderactinia. Geol. Soc. Am. Spec. Pap. 44:1363.Google Scholar
Veron, J. E. N. and Pichon, M. 1976. Scleractinia of eastern Australia. I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Inst. Mar. Sci. Monogr. Ser. 1:186.Google Scholar
Veron, J. E. N. and Pichon, M. 1980. Sderactinia of eastern Australia. III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae. Australian Inst. Mar. Sci. Monogr. Ser. 4:1422.Google Scholar
Veron, J. E. N. and Pichon, M. 1982. Sderactinia of eastern Australia. IV. Family Poritidae. Australian Inst. Mar. Sci. Monogr. Ser. 5:1159.Google Scholar
Veron, J. E. N., Pichon, M., and Wijsman-Best, M.M., 1977. Sderactinia of eastern Australia. II. Families Faviidae, Trachyphyllidae. Australian Inst. Mar. Sci. Monogr. Ser. 3:1233.Google Scholar
Veron, J. E. N. and Wallace, C. C.In press. Sderactinia of eastern Australia. V. Family Acroporidae. Australian Inst. Mar. Sci. Monogr. Ser. 6.Google Scholar
Wallace, C. C. 1978. The coral genus Acropora (Sderactinia: Astrocoeniina: Acroporidae) in the central and southern Great Barrier Reef province. Mem. Queensland Mus. 18:273319.Google Scholar
Wells, J. W. 1957. Coral reefs. Pp. 609631. In: Hedgepeth, J. W., ed. Treatise on Marine Ecology and Paleoecology. Vol. 1. Ecology. Geol. Soc. Am. Mem.67, Vol 1.Google Scholar
Wells, J. W. 1969. Aspects of Pacific coral reefs. Micronesica. 5:317322.Google Scholar
Wijsman-Best, M. 1974. Habitat induced modification of reef corals (Faviidae) and its consequences for taxonomy. Proc. 2d Int. Coral Reef Symp. 2:217228.Google Scholar
Wise, K. P. and Schopf, T. J. M. 1981. Was marine faunal diversity in the Pleistocene affected by changes in sea level? Paleobiology. 7:394399.Google Scholar