Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T19:29:21.191Z Has data issue: false hasContentIssue false

Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny

Published online by Cambridge University Press:  14 November 2019

Selina R. Cole*
Affiliation:
Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York10024, U.S.A.; and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, MRC 121, Washington, D.C. 20013-7012, U.S.A. E-mail: scole@amnh.org.

Abstract

Identifying correlates of extinction risk is important for understanding the underlying mechanisms driving differential rates of extinction and variability in the temporal durations of taxa. Increasingly, it is recognized that the effects of multiple, potentially interacting variables and phylogenetic relationships should be incorporated when studying extinction selectivity to account for covariation of traits and shared evolutionary history. Here, I explore a variety of biological and ecological controls on genus longevity in the global fossil record of diplobathrid crinoids by analyzing the combined effects of species richness, habitat preference, body size, filtration fan density, and food size selectivity. I employ a suite of taxic and phylogenetic approaches to (1) quantitatively compare and rank the relative effects of multiple factors on taxonomic longevity and (2) determine how phylogenetic comparative approaches alter interpretations of extinction selectivity.

I find controls on diplobathrid genus duration are hierarchically structured, where species richness is the primary predictor of duration, habitat is the secondary predictor, and combinations of ecological and biological traits are tertiary controls. Ecology plays an important but complex role in the generation of crinoid macroevolutionary patterns. Notably, tolerance of environmental heterogeneity promotes increased genus duration across diplobathrid crinoids, and the effects of traits related to feeding ecology vary depending on habitat lithology. Finally, I find accounting for phylogeny does not consistently decrease the significance of correlations between traits and genus duration, as is commonly expected. Instead, the strength of relationships between traits and duration may increase, decrease, or remain statistically similar, and both the magnitude and direction of these shifts are generally unpredictable. However, traits with strong correlations and/or moderately large effect sizes (Cohen's f2 > 0.15) under taxic approaches tend to remain qualitatively unchanged under phylogenetic approaches.

Type
Articles
Copyright
Copyright © 2019 The Paleontological Society. All rights reserved

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.533j6c3

References

Literature Cited

Anderson, D.R. 2008. Model based inference in the life sciences: a primer on evidence. Springer Science and Business Media, New York.CrossRefGoogle Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology 54:273288.Google Scholar
Ausich, W. I., and Bottjer, D. J.. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.Google ScholarPubMed
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.CrossRefGoogle Scholar
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.CrossRefGoogle Scholar
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.CrossRefGoogle Scholar
Baumiller, T. K. 1992. Importance of hydrodynamic lift to crinoid autecology, or, could crinoids function as kites? Journal of Paleontology 66:658665.Google Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.CrossRefGoogle Scholar
Baumiller, T. K. 1997. Crinoid functional morphology. Paleontological Society Paper 3:4568.Google Scholar
Baumiller, T. K. 2008. Crinoid ecological morphology. Annual Review of Earth and Planetary Sciences 36:221249.Google Scholar
Blomberg, S. P., Garland, T. Jr., and Ives, A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.CrossRefGoogle ScholarPubMed
Breimer, A. 1969. A contribution to paleoecology of Paleozoic stalked crinoids. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen Series B: Physical Sciences 72:139150.Google Scholar
Brower, J. C. 2007. The application of filtration theory to food gathering in Ordovician crinoids. Journal of Paleontology 81:12843000.CrossRefGoogle Scholar
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., Orme, C. D. L., and Purvis, A.. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:12391241.Google ScholarPubMed
Cohen, J. E. 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Erlbaum, Hillsdale, N.J.Google Scholar
Cole, S. R. 2017. Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology 91:815828.Google Scholar
Cole, S. R. 2018. Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology 62:357373.CrossRefGoogle Scholar
Cole, S. R., Wright, D. F., and Ausich, W. I.. 2019. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology 52:8298.Google Scholar
Colles, A., Liow, L. H., and Prinzing, A.. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12:849863.CrossRefGoogle ScholarPubMed
Congreve, C. R., Falk, A. R., and Lamsdell, J. C.. 2018. Biological hierarchies and the nature of extinction. Biological Reviews 93:811826.CrossRefGoogle ScholarPubMed
Cooper, N., Jetz, W., and Freckleton, R. P.. 2010. Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology 23:25292539.CrossRefGoogle ScholarPubMed
Cox, D. R., and Snell, E. J.. 1989. The analysis of binary data, 2nd ed. Chapman and Hall, New York.Google Scholar
Crampton, J. S., Cooper, R., Beu, A. G., Foote, M., and Marshall, B. A.. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology 36:204223.CrossRefGoogle Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.Google Scholar
Field, D. J., Bercovici, A., Berv, J. S., Dunn, R., Fastovsky, D. E., Lyson, T. R., Vajda, V., and Gauthier, J. A.. 2018. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Current Biology 28:18251831.e2.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A.. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.CrossRefGoogle Scholar
Foote, M., Ritterbush, K. A., and Miller, A. I.. 2016. Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance. Paleobiology 42:269288.Google Scholar
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.Google ScholarPubMed
Fritz, S. A., and Purvis, A.. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24:10421051.Google ScholarPubMed
Gaston, K. J., and Blackburn, T. M.. 1997. Birds, body size, and the threat of extinction. Philosophical Transactions of the Royal Society of London B 347: 205212.Google Scholar
Gili, C., and Martinell, J.. 1994. Relationship between species longevity and larval ecology in nassariid gastropods. Lethaia 27:291299.CrossRefGoogle Scholar
Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326:119157.Google ScholarPubMed
Green, W. A., Hunt, G., Wing, S. L., and DiMichele, W. A.. 2011. Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction. Paleobiology 37:7291.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, D. P.. 2001. PAST: palaeontological statistics package for education and data analysis. Palaeontologica Electronica 4:19.Google Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science 199:885887.Google ScholarPubMed
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.CrossRefGoogle Scholar
Harmon, L. J. 2018. Phylogenetic comparative methods: learning from trees. Self published under a CC-BY-4.0 license. https://lukejharmon.github.io/pcm.CrossRefGoogle Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., and Challenger, W.. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129131.Google ScholarPubMed
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.Google ScholarPubMed
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O'Dea, A., Pandolfi, J. M., Simpson, C., and Tittensor, D. P.. 2012. Extinctions in ancient and modern seas. Trends in Ecology and Evolution 27:608617.CrossRefGoogle ScholarPubMed
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carlson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology 40:675692.CrossRefGoogle Scholar
Harvey, P. H., and Pagel, M. D.. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:e18946.Google ScholarPubMed
Holterhoff, P. F. 1997. Filtration models, guilds, and biofacies: crinoid paleoecology of the Stanton Formation (Upper Pennsylvanian), midcontinent, North America. Palaeogeography, Palaeoclimatology, Palaeoecology 130:177208.Google Scholar
Hopkins, M. J. 2011. How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using late Cambrian trilobites. Evolution 65:32533273.CrossRefGoogle ScholarPubMed
Humphries, J. M., Bookstein, F. L., Chernoff, B., Smith, G. R., Elder, R. L., and Poss, S. G.. 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology 30:291308.CrossRefGoogle Scholar
Hunt, G., and Carrano, M. T.. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Paleontological Society Papers 16:245269.CrossRefGoogle Scholar
Hunt, G., Roy, K., and Jablonski, D.. 2005. Species-level heritability reaffirmed: a comment on “on the heritability of geographic range sizes.” American Naturalist 166:129135.CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129134.Google ScholarPubMed
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360364.Google Scholar
Jablonski, D. 1991. Extinctions: a paleontological perspective. Science 253: 754757.CrossRefGoogle ScholarPubMed
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds., Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.CrossRefGoogle Scholar
Jablonski, D. 2008a. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.CrossRefGoogle Scholar
Jablonski, D. 2008b. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics 39:501524.CrossRefGoogle Scholar
Jablonski, D., and Hunt, G.. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.CrossRefGoogle ScholarPubMed
Jablonski, D., and Roy, K.. 2003. Geographical range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London B 270:401406.CrossRefGoogle ScholarPubMed
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology 59:551560.Google Scholar
Kammer, T. W., and Ausich, W. I.. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology 13:379395.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 2006. The “Age of Crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238248.CrossRefGoogle Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1997. Species longevity as a function of niche breadth. Geology 25:219222.2.3.CO;2>CrossRefGoogle Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1998. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24:155176.Google Scholar
Kitazawa, K., Oji, T., and Sunamura, M.. 2007. Food composition of crinoids (Crinoidea: Echinodermata) in relation to stalk length and fan density: their paleoecological implications. Marine Biology 152:959968.CrossRefGoogle Scholar
Kolbe, S. E., Lockwood, R., and Hunt, G.. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355368.CrossRefGoogle Scholar
Liow, L. H. 2004. A test of Simpson's “rule of the survival of the relatively unspecialized” using fossil crinoids. American Naturalist 164:431443.CrossRefGoogle ScholarPubMed
Liow, L. H. 2006. Do deviants live longer? Morphology and longevity in trachyleberidid ostracodes. Paleobiology 32:5569.CrossRefGoogle Scholar
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.CrossRefGoogle Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.Google Scholar
Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:9951003.CrossRefGoogle ScholarPubMed
Lyons, S. K., Miller, J. H., Fraser, D., Smith, F. A., Boyer, A., Lindsey, E., and Mychajliw, A. M.. 2016. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biology Letters 12:20160342.CrossRefGoogle ScholarPubMed
Macurda, D. B., and Meyer, D. L.. 1974. Feeding posture of modern stalked crinoids. Nature 247:394396.CrossRefGoogle Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.CrossRefGoogle Scholar
Messing, C. G., Hoggett, A. K., Vail, L. L., Rouse, G. W., and Rowe, F. W. E.. 2017. Class Crinoidea. Pp. 167225 in O'Hara, T. and Byrne, M., Australian echinoderms: biology, ecology and evolution. CSIRO Publishing, Melbourne, and ABRS, Canberra.Google Scholar
Meyer, D. L. 1973. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology 22:105129.Google Scholar
Molina-Venegas, R., and Rodríguez, M. A.. 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology 17:53.CrossRefGoogle ScholarPubMed
Nagelkerke, N. J. D. 1991. A note on a general definition of the coefficient of determination. Biometrika 78:692692.Google Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118 in Novacek, M. J. and Wheeler, Q. D., Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Nurnberg, S., and Aberhan, M.. 2013. Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39:360372.CrossRefGoogle Scholar
Okasha, S. 2006. Evolution and the levels of selection. Oxford University Press, New York.CrossRefGoogle Scholar
Pagel, M. D. 1999. Inferring the historical patterns of biological evolution. Nature 301:877884.CrossRefGoogle Scholar
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.Google ScholarPubMed
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle ScholarPubMed
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B., and Winemiller, K. O.. 2017. Toward a periodic table of niches, or exploring the lizard niche hypervolume. American Naturalist 190:601616.CrossRefGoogle ScholarPubMed
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.. 2018. R Core Team (2018). nlme: linear and nonlinear mixed effects models. R package version 3.1–137.Google Scholar
Powell, M.G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.CrossRefGoogle Scholar
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301319.CrossRefGoogle Scholar
Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M.. 2000. Predicting extinction risk in declining species. Proceedings of the Royal Society of London B 267:1947–52.CrossRefGoogle ScholarPubMed
Puttick, M. N., Kriwet, J., Wen, W., Hu, S., Thomas, G. H., and Benton, M. J.. 2017. Body length of bony fishes was not a selective factor during the biggest mass extinction of all time. Palaeontology 60:727741.CrossRefGoogle Scholar
Rabosky, D. L., and McCune, A. R.. 2010. Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution 25:6874.CrossRefGoogle ScholarPubMed
Revell, L. J. 2009. Size-correction and principal components for interspecific comparative studies. Evolution 63:32583268.CrossRefGoogle ScholarPubMed
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.CrossRefGoogle Scholar
Rohlf, F. J. 2007. A comment on phylogenetic correction. Evolution 60:15091515.Google Scholar
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., and Mermelstein, R. J.. 2012. A practical guide to calculating Cohen's f 2, a measurement of local effect size, from PROC MIXED. Frontiers in Psychology 3:16.Google Scholar
Simpson, C. 2010. Species selection and driven mechanisms jointly generate a large-scale morphological trend in monobathrid crinoids. Paleobiology 36:481496.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Smith, J. T., and Roy, K.. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.Google Scholar
Smits, P. D. 2015. Expected time-invariant effects of biological traits on mammal species duration. Proceedings of the National Academy of Sciences USA 112:1301513020.CrossRefGoogle ScholarPubMed
Soul, L. C., and Friedman, M.. 2017. Bias in phylogenetic measurements of extinction and a case study of end-Permian tetrapods. Palaeontology 60:179185.Google Scholar
Stadler, T. 2011. Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the National Academy of Sciences USA 108:61876192.CrossRefGoogle ScholarPubMed
Symonds, M. R., and Blomberg, S. P.. 2014. A primer on phylogenetic generalised least squares. Pp. 105130 in Garamszegi, L. Z., ed., Modern phylogenetic comparative methods and their application in evolutionary biology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Thomas, C.D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., Hannah, L., and Hughes, L.. 2004. Extinction risk from climate change. Nature 427:145148.Google ScholarPubMed
Tomiya, S. 2013. Body size and extinction risk in terrestrial mammals above the species level. American Naturalist 182:E196E214.CrossRefGoogle ScholarPubMed
Villier, L., and Korn, D.. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.CrossRefGoogle ScholarPubMed
Vrba, E. S. 1984. What is species selection? Systematic Zoology 33:318328.CrossRefGoogle Scholar
Watkins, R., and Hurst, J. M.. 1977. Community relations of Silurian crinoids at Dudley, England. Paleobiology 3:207217.Google Scholar
Webster, G. D., and Webster, D. W.. 2014. Bibliography and index of Paleozoic crinoids, coronates, and hemistreptocrinoids, 1758–2012. http://crinoids.azurewebsites.net, accessed 12 July 2016.Google Scholar
Wiens, J. J. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193197.Google ScholarPubMed
Williams, G. C. 1975. Sex and evolution. Princeton University Press, Princeton, N.J.Google ScholarPubMed
Wootton, J. T. 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151165.CrossRefGoogle Scholar