Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T02:15:08.809Z Has data issue: false hasContentIssue false

Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the lower Paleozoic

Published online by Cambridge University Press:  08 April 2016

David R. Kobluk
Affiliation:
Erindale College, Earth and Planetary Sciences, University of Toronto; Mississauga, Ontario, Canada L5L 1C6
Noel P. James
Affiliation:
Department of Geology, Memorial University; St. John's, Newfoundland, Canada, A1C 5S7
S. George Pemberton
Affiliation:
Department of Geology, McMaster University; Hamilton, Ontario, Canada, L8S 4M1

Abstract

The traces of macroboring organisms are known throughout the Phanerozoic, with diversification and exploitation of the macroboring niche paralleling variations in the development of skeletal metazoa. The oldest macroboring biota is an abundant yet low diversity fauna in hardgrounds and reefs of Lower Cambrian age. Following the extinction of archaeocyathids at the end of the Lower Cambrian (and thus the demise of skeletal reefs until the Middle Ordovician), boring organisms appear to be restricted to submarine hardgrounds. With the development of skeletal reefs in the Middle Ordovician the macroboring fauna shows a rapid speciation and a dramatic increase in diversity. This same pattern occurs again in the Devonian. This record appears to represent refuge of the fauna in low stress, hardground environments when skeletal reefs were not present and radiation in the high stress environment of the reef when large skeletal metazoa were abundant and diverse.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bassler, R. G. 1952. Taxonomic notes on genera of fossil and Recent bryozoa. Washington Acad. Sci. J. 42:381385.Google Scholar
Bassler, R. G. 1953. Bryozoa. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part G. 253 pp. Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Boekschoten, G. J. 1966. Shell borings of sessile epibiontic organisms as paleoecological guides (with examples from the Dutch Coast). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2:333379.CrossRefGoogle Scholar
Boucher, D. A. 1977. Submarine Diagenesis of the Corals of the Bellairs Reef, Barbados. 110 pp. Unpubl. M. Sc. thesis, McGill Univ.; Montreal.Google Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. Pp. 4090. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool, England.Google Scholar
Bromley, R. G. 1972. On some ichnotaxa in hard substrates, with a re-definition of Trypanites Mägdefrau. Paläontol. Zr. 46:9398.CrossRefGoogle Scholar
Cameron, B. 1969a. New name for Palaeosabella prisca (McCoy), a Devonian worm-boring, and its preserved probable borer. J. Paleontol. 43:189.Google Scholar
Cameron, B. 1969b. Paleozoic shell-boring annelids and their trace fossils. Am. Zool. 9:689703.CrossRefGoogle Scholar
Carriker, M. R. 1969. Excavation of boreholes by the gastropod Uralsopinx: an analysis by light and scanning electron microscopy. Am. Zool. 9:917934.CrossRefGoogle Scholar
Carriker, M. R. and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. U.S. Geol. Surv. Prof. Pap. 593-B:B1B26.Google Scholar
Clarke, J. M. 1908. The beginning of dependant life. Bull. N.Y. State Mus. 121:146.Google Scholar
Clarke, J. M. 1921. Organic dependance and disease: their origin and significance. Bull. N.Y. State Mus. 221:1.Google Scholar
Condra, G. E. and Elias, M. K. 1944. Carboniferous and Permian ctenostomatous bryozoa. Geol. Soc. Am. Bull. 55:517.CrossRefGoogle Scholar
Copper, P. 1974. Structure and development of Paleozoic reefs. Proc. Second Int. Coral Reef Symp. Brisbane. 1:365386.Google Scholar
Cuffey, R. J. 1977. Mid-Ordovician bryozoan reefs in western Newfoundland (Abstr.). Geol. Soc. Am. Abstr. with Programs. 9:253.Google Scholar
DeLaubenfels, M. W. 1955. Porifers. Pp. E12E112. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part E. Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Elias, M. K. 1957. Late Mississippian fauna from the Redbook Hollow Formation of southern Oklahoma. J. Paleontol. 31:370427.Google Scholar
Elias, R. J. 1976. Solitary rugose corals of the Selkirk Member, Red River Formation (Late Middle or Upper Ordovician), southern Manitoba. 232 pp. Unpubl. M.S. thesis, Univ. of Cincinnati; Cincinnati, Ohio.Google Scholar
Fenton, C. L. and Fenton, M. A. 1932. Boring sponges in the Devonian of Iowa. Am. Midland Nat. 13:42.Google Scholar
Fischbuch, N. R. 1968. Stratigraphy, Devonian Swan Hills Reef Complexes of central Alberta. Bull. Can. Petrol. Geol. 16:446587.Google Scholar
Goreau, T. F. and Hartmann, W. D. 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs. Pp. 2554. In: Sognnaes, R. F., ed. Mechanisms of Hard Tissue Destruction. Am. Assoc. Adv. Sci. Publ. 75.Google Scholar
Halleck, M. S. 1973. Crinoids, hardgrounds, and community succession: the Silurian Laurel-Waldron contact in southern Indiana. Lethaia. 6:239252.CrossRefGoogle Scholar
Havard, C. and Oldershaw, H. C. 1976. Early diagenesis in back-reef sedimentary cycles, Snipe Lake reef complex, Alberta. Bull. Can. Petrol. Geol. 24:2769.Google Scholar
Hecker, R. Th. 1970. Palaeoichnological research in the Palaeontological Institute of the Academy of Sciences of the USSR. Pp. 215226. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool, England.Google Scholar
Howell, B. F. 1962. Worms. Pp. W144W177. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Jaanusson, V. 1961. Discontinuity surfaces in limestones. Bull. Geol. Inst. Univ. Uppsala. 40:221241.Google Scholar
James, N. P. 1970. Role of boring organisms in the coral reefs of the Bermuda Platform. Bermuda Biol. Stat. Res. Spec. Publ. 6:1928.Google Scholar
James, N. P. and Kobluk, D. R. 1977. Internal structure of Lower Cambrian archaeocyathid reefs: northern Maritime Appalachians (Abstr.). Soc. Econ. Miner. Paleontol.—Am. Assoc. Petrol. Geol. Nat. Meet; Washington, D.C.Google Scholar
James, N. P., Kobluk, D. R., and Pemberton, S. G. 1977. The oldest macroborers: Lower Cambrian of Labrador. Science. 197:980983.CrossRefGoogle ScholarPubMed
Jansa, L. F. and Fischbuch, N. R. 1974. Evolution of a Middle and Upper Devonian sequence from a clastic coastal plain-deltaic complex into overlying carbonate reef complexes and banks, Sturgeon-Mitsue area, Alberta. Geol. Surv. Can. Bull. 234.CrossRefGoogle Scholar
Jordan, R. 1969. Deutung der Astrorhizen der Stromatoporoiden (?Hydrozoa) als Bohrspuren. Neues J. Geol. Paläontol. Monatsh. 1969:705711.Google Scholar
Jux, U. 1964. Kommensalen oberdevonischer Atrypen aus Bergisch Gladbach (Reinisches Schiefergebirge). Neues Jb. Geol. Paläontol. Monatsh. 1964:675687.Google Scholar
Kapp, U. S. 1975. Paleoecology of Middle Ordovician stromatoporoid mounds in Vermont. Lethaia. 8:195207.CrossRefGoogle Scholar
Kapp, U. S. and Stearn, C. W. 1975. Stromatoporoids of the Chazy Group (Middle Ordovician), Lake Champlain, Vermont and New York. J. Paleontol. 49:163186.Google Scholar
Kobluk, D. R., Pemberton, S. G., Karolyi, M., and Risk, M. J. 1977. The Silurian-Devonian disconformity in southern Ontario. Bull. Can. Petrol. Geol. 25:11571186.Google Scholar
Leavitt, E. M. 1968. Petrology, paleontology, Carson Creek North reef complex, Alberta. Bull. Can. Petrol. Geol. 16:298413.Google Scholar
MacGeachy, J. K. 1975. Boring by macro-organisms in the coral Montastrea annularis on Barbados reefs. 110 pp. Unpubl. M. Sc. thesis, McGill Univ.; Montreal.Google Scholar
Mägdefrau, K. 1932. Über eininge Bohrgänge aus dem unteren Muschelkalk von Jena. Paläontol. Z. 14:150160.CrossRefGoogle Scholar
McLean, R. F. 1967. Erosion of burrows in bedrock in the tropical sea urchin, Echinometra lucunter. Can. J. Zool. 45:586588.Google Scholar
Müller, A. H. 1956. Weitere Beitrage zur Ichnologie, Stratinomie und Ökologie der germanischen Trias. Geologie. 5:405423.Google Scholar
Müller, G. 1968. Bohr-Röhren von unbekannten Anneliden und anderen Organismen in unterdevonischen Brachiopodenklappen aus der Eifel und dem Siegerland (Rheinisches Schiefergebirge). 121 pp. Inaug. Diss. Univ. Köln.Google Scholar
Morningstar, H. 1922. Pottsville fauna of Ohio. Geol. Surv. Ohio Bull. ser. 4. 25:274.Google Scholar
Neumann, A. C. 1966. Observations on coastal bioerosion in Bermuda and measurements of the boring rate of the boring sponge, Cliona lampa. Limnol. Oceanogr. 11:92108.CrossRefGoogle Scholar
Newall, G. 1970. A symbiotic relationship between Lingula and the coral Heliolites in the Silurian. Pp. 335344. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool, England.Google Scholar
Otter, G. W. 1937. Rock-destroying organisms in relation to coral reefs. Brit. Mus. (Nat. Hist.) Great Barrier Reef Exped., 1928–1929. 1:323352.Google Scholar
Pemberton, S. G., Yeo, R., Kobluk, D. R., and Risk, M. J.Trypanites macroborings from the Silurian of Ontario: origins and zoological affinities. In prep.Google Scholar
Perkins, R. D., and Tsentas, C. I. 1976. Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies. Geol. Soc. Am. Bull. 87:16151628.Google Scholar
Pitcher, M. 1963. Evolution of Chazyan (Ordovician) reefs of Eastern United States and Canada. Bull. Can. Petrol. Geol. 12:632691.Google Scholar
Pojeta, J. Jr. and Palmer, T. J. 1976. The origin of rock boring in mytilacean pelecypods: Alcheringa. 1:167179.CrossRefGoogle Scholar
Poulsen, C. 1967. Fossils from the lower Cambrian of Bornholm. Mat-fys. Meddr. 36:2:1.Google Scholar
Raymond, P. E. 1924. The oldest coral reef. Vermont State Geol. Rep. 14:7276.Google Scholar
Rice, M. E. and Macintyre, I. G. 1972. A preliminary study of sipunculan burrows in rock thin sections. Carib. J. Sci. 12:4144.Google Scholar
Richards, R. P. and Shabica, C. W. 1969. Cylindrical living burrows in Ordovician Dalmanellid brachiopod beds. J. Paleontol. 43:838841.Google Scholar
Robertson, P. B. 1963. A survey of the marine rock-boring fauna of southeast Florida. 167 pp. Unpubl. M.S. thesis, Inst. Mar. Sci. Univ. Miami; Miami, Ohio.Google Scholar
Ruedemann, R. 1925. The Utica and Lorraine Formations of New York, Pt. 2, no. 1, Plants, sponges, corals, graptolites, crinoids, worms, bryozoans, brachiopods. N.Y. State Mus. Bull. 262:171.Google Scholar
Schneider, J. 1976. Biological and inorganic factors in the destruction of limestone coasts. Contrib. to Sedimentol. No. 6, 112 pp. E. Schweizerbart'sche Verlagsbrechhandlung (Nägele u. Obermiller); Stuttgart.Google Scholar
Schumann, D. 1969. “Byssus”-artige Stielmuskel-Konoergenzen bei artikulaten Brachiopoden. Neues J. Geol. Paläontol. Abh. 96:421.Google Scholar
Seilacher, A. 1969. Paleoecology of boring barnacles. Am. Zool. 9:705719.CrossRefGoogle Scholar
Solle, G. 1938. Die ersten Bohr-Spongien im europaischen Devon und einige andere Spuren. Senckenbergiano. 20:154.Google Scholar
Soule, J. D. and Soule, D. F. 1969. Systematics and biogeography of burrowing bryozoans. Am. Zool. 9:791802.CrossRefGoogle Scholar
Teichert, C. 1945. Parasitic worms in Permian brachiopod shells in western Australia. Am. J. Sci. 243:197.Google Scholar
Toomey, D. F. 1970. An unhurried look at a lower Ordovician mound horizon, southern Franklin mountains, West Texas. J. Sediment. Petrol. 40:13181334.Google Scholar
Warburton, F. E. 1968. The manner in which the sponge Cliona bores into calcareous objects. Can. J. Zool. 36:555562.CrossRefGoogle Scholar
Warme, J. E. 1975. Borings as trace fossils, and the processes of marine bioerosion. Pp. 181227. In: Frey, R. W., ed. Trace Fossils. Springer-Verlag; New York.CrossRefGoogle Scholar