Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:53:25.990Z Has data issue: false hasContentIssue false

Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta)

Published online by Cambridge University Press:  08 April 2016

Julio Aguirre
Affiliation:
Department of Stratigraphy and Paleontology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain. E-mail: jaguirre@ugr.es
Francisco Perfectti
Affiliation:
Department of Genetics, University of Granada, Fuentenueva s/n, 18002, Granada, Spain. E-mail: fperfect@ugr.es
Juan C. Braga
Affiliation:
Department of Stratigraphy and Paleontology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain. E-mail: jbraga@ugr.es

Abstract

When assessing the timing of branching events in a phylogeny, the most important tools currently recognized are a reliable molecular phylogeny and a continuous, relatively complete fossil record. Coralline algae (Rhodophyta, Corallinales, and Sporolithales) constitute an ideal group for this endeavor because of their excellent fossil record and their consistent phylogenetic reconstructions. We present the evolutionary history of the corallines following a novel, combined approach using their fossil record, molecular phylogeny (based on the 18S rDNA gene sequences of 39 coralline species), and molecular clocks. The order of appearance of the major monophyletic taxa of corallines in the fossil record perfectly matches the sequence of branching events in the phylogeny. We were able to demonstrate the robustness of the node ages in the phylogeny based on molecular clocks by performing an analysis of confidence intervals and maximum temporal ranges of three monophyletic groups of corallines (the families Sporolithaceae and Hapalidiaceae, as well as the subfamily Lithophylloideae). The results demonstrate that their first occurrences are close to their observed appearances, a clear indicator of a very complete stratigraphic record. These chronological data are used to confidently constrain the ages of the remaining branching events in the phylogeny using molecular clocks.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adey, W. H., and Macintyre, I. G. 1973. Crustose coralline algae: re-evaluation in the geological sciences. Geological Society of America Bulletin 84:883904.Google Scholar
Adey, W. H., Townsend, R. A., and Boykins, W. T. 1982. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithsonian Contributions to Marine Science 15:174.Google Scholar
Aguirre, J., and Braga, J. C. 1998. Redescription of Lemoine's (1939) types of coralline algal species from Algeria. Palaeontology 41:489507.Google Scholar
Aguirre, J., and Braga, J. C. 2005a. The citation of nongeniculate fossil coralline red algal species in the twentieth century literature: an analysis with implications. Revista Española de Micropaleontología 37:5762.Google Scholar
Aguirre, J., and Braga, J. C. 2005b. Timing of origination of coralline algal taxa (Corallinales, Rhodophyta) matches molecular phylogeny. In Kawai, H., ed. Abstract papers of the 8th International Phycological Conference, Durban (South Africa). Phycologia 44(Suppl.):1.Google Scholar
Aguirre, J., Braga, J. C., and Piller, W. E. 1996. Reassessment of Palaeothamnium Conti, 1946 (Corallinales, Rhodophyta). Review of Palaeobotany and Palynology 94:19.CrossRefGoogle Scholar
Aguirre, J., Riding, R., and Braga, J. C. 2000. Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651667.Google Scholar
Aguirre, J., Baceta, J. I., and Braga, J. C. 2007. Recovery of primary producers after the Cretaceous-Tertiary mass extinction: Paleocene calcareous red algae from the Iberian Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 249:393411.Google Scholar
Arias, C., Masse, J. P., and Vilas, L. 1995. Hauterivian shallow marine calcareous biogenic mounds: S. E. Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 119:317.Google Scholar
Avise, J. C. 2009. Timetrees: beyond cladograms, phenograms, and phylograms. Pp. 1925 in Hedges, and Kumar, 2009a.CrossRefGoogle Scholar
Ayala, F. J. 1986. On the virtues and pitfalls of the molecular clocks. Journal of Heredity 77:226235.Google Scholar
Bailey, J. C. 1999. Phylogenetic position of Lithophyllum incrustans and Titanoderma pustulatum (Corallinaceae, Rhodophyta) based on 18S rRNA gene sequence analysis, with a revised classification of the Lithophylloideae. Phycologia 38:208216.Google Scholar
Bailey, J. C., and Chapman, R. L. 1996. Evolutionary relationships among coralline red algae (Corallinaceae, Rhodophyta) inferred from 18S rRNA gene sequence analysis. Pp. 363376 in Chaudhary, B. R. and Agrawal, S. B., eds. Cytology, genetics and molecular biology of algae. SPB Academic Publishing, Amsterdam, The Netherlands. Google Scholar
Bailey, J. C., and Chapman, R. L. 1998. A phylogenetic study of the Corallinales (Rhodophyta) based on nuclear small-SU unit rRNA gene sequence. Journal of Phycology 34:692705.Google Scholar
Bailey, J. C., Gabel, J. E., and Freshwater, D. W. 2004. Nuclear 18S rRNA gene sequence analyses indicate that the Mastophoroideae (Corallinaceae, Rhodophyta) is a polyphyletic taxon. Phycologia 43:312.Google Scholar
Bassi, D. 1998. Coralline red algae (Corallinales, Rhodophyta) from the Upper Eocene Calcare di Nago (Lake Garda, northern Italy). Annali dell'Universitá di Ferrara, Sezione Scienze della Terra 7(suppl.):151.Google Scholar
Bassi, D., Woelkerling, J. W., and Nebelsik, J. H. 2000. Taxonomic and biostratigraphical re-assessment of Subterraniphyllum Elliott (Corallinales, Rhodophyta). Palaeontology 43:405425.CrossRefGoogle Scholar
Basso, D., Fravega, P., Piazza, M., and Vannucci, G. 1998. Revision and re-documentation of M. Airoldi's species of Mesophyllum from the Tertiary Piedmont Basin (NW Italy). Rivista Italiana di Paleontologia e Stratigrafia 104:8594.Google Scholar
Benton, M. J. 2004. The quality of the fossil record. Pp. 6690 in Donoghue, P. C. J. and Smith, M. P., eds. Telling the evolutionary time: molecular clocks and the fossil record (Systematic Association Special Volume). CRC Press, London.Google Scholar
Benton, M. J., and Ayala, F. J. 2003. Dating the tree of life. Science 300:16981700.Google Scholar
Benton, M. J., and Donoghue, P. C. J. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24:2653.Google Scholar
Benton, M. J., Wills, M. A., and Hitchin, R. 2000. Quality of the fossil record through time. Nature 403:534537.Google Scholar
Benton, M. J., Donoghue, P. C. J., and Asher, R. J. 2009. Calibrating and constraining molecular clocks. Pp. 3586 in Hedges, and Kumar, 2009a.Google Scholar
Blair, J. E., and Hedges, S. B. 2005. Molecular clocks do not support the Cambrian explosion. Molecular Biology and Evolution 22:387390.CrossRefGoogle ScholarPubMed
Bosence, D. W. J. 1991. Coralline algae: Mineralization, taxonomy, and palaeoecology. Pp. 98113 in Riding, R., ed. Calcareous algae and stromatolites. Springer, Berlin.Google Scholar
Braga, J. C. 2003. Application of botanical taxonomy to fossil coralline algae (Corallinales, Rhodophyta). Acta Micropaleontologica Sinica 20:4756.Google Scholar
Braga, J. C. 2006. Preserved gamete-producing structures. Journal of Taphonomy 4:4748.Google Scholar
Braga, J. C., and Aguirre, J. 1995. Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Review of Palaeobotany and Palynology 86:265286.Google Scholar
Braga, J. C., and Bassi, D. 2007. Neogene history of Sporolithon Heydrich (Corallinales, Rhodophyta) in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology 243:189203.Google Scholar
Braga, J. C., Bosence, D. W. J., and Steneck, R. S. 1993. New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535547.Google Scholar
Braga, J. C., Bassi, D., Zakrevskaya, E., and Petronova-Radionova, E. 2005. Reassessment of the type collections of Maslov's species of Corallinales (Rhodophyta). I. Species originally attributed to Lithophyllum and Melobesia . Revista Española de Paleontología 20:207224.Google Scholar
Broadwater, S. T., Harvey, A. S., Lapointe, E. A., and Woelkerling, W. J. 2002. Conceptacle structure of the parasitic coralline red alga Choreonema thuretii (Corallinales) and its taxonomic implications. Journal of Phycology 38:11571168.Google Scholar
Brodie, J., and Zuccarello, G. C. 2007. Systematic of the species rich algae: red algal classification. Pp. 323336 in Hodkinson, T. R. and Parnell, J. A. N., eds. Reconstructing the tree of life: taxonomy and systematics of species rich taxa (Systematics Association Special Volume 72). CRC Press, London.Google Scholar
Broom, J. E. S., Hart, D. R., Farr, T. J., Nelson, W. A., Neill, K. F., Harvey, A. S., and Woelkerling, W. J. 2008. Utility of pbsA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Molecular Phylogenetics and Evolution 46:958973.Google Scholar
Cabioch, J. 1971. Essai d'une nouvelle classification de Corallinacées actuelles. Compte Rendu Hedbomadaire des Séances de l'Académie des Sciences, Paris 272 D:16161619.Google Scholar
Cabioch, J. 1972. Etude sur les Corallinacées II. La morphogenèse: conséquences systématiques et phylogénétiques. Cahiers de Biologie Marine 13:137288.Google Scholar
Cabioch, J. 1988. Morphogenesis and generic concepts in coralline algae: a reappraisal. Helgoländer Meeresuntersuchungen 42:493509.Google Scholar
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540552.Google Scholar
Denizot, M., and Massieux, M. 1965. Observations sur le genre Distichoplax (algues Mélobésiées). Bulletin de Société Géologique de France 7:387391.Google Scholar
Elliott, G. F. 1959. New calcareous algae from the Cretaceous of Iraq. Revue de Micropaléontologie 1:217222.Google Scholar
Endo, R. 1961. Phylogenetic relationships among the calcareous algae. Scientific Reports of Saitama University, Endo Comm.Google Scholar
Farr, T. J., Broom, J., Hart, D., Neil, K., and Nelson, W. 2009. Common coralline algae of northern New Zealand: an identification guide. NIWA Information Series No. 70.Google Scholar
Gabrielson, P. W., and Garbary, D. J. 1986. Systematics of red algae (Rhodophyta). CRC Critical Review of Plant Science 3:325366.Google Scholar
Gabrielson, P. W., Garbary, D. J., and Scagel, R. F. 1985. The nature of the ancestral red alga: inferences from cladistic analysis. BioSystems 18:335346.Google Scholar
Garbary, D. J., and Gabrielson, P. W. 1990. Taxonomy and evolution. Pp. 477498 in Cole, K. M. and Sheath, R. G., eds. Biology of the red algae. Cambridge University Press, Cambridge.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Harvey, A. S., and Woelkerling, W. J. 2007. A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Ciencias Marinas 33:411426.Google Scholar
Harvey, A. S., Woelkerling, W. J., and Millar, A. J. K. 2002. The Sporolithaceae (Corallinales, Rhodophyta) in south-eastern Australia: taxonomy and 18S rRNA phylogeny. Phycologia 41:207277.Google Scholar
Harvey, A. S., Broadwater, S. T., Woelkerling, W. J., and Mitrovski, P. J. 2003. Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. Journal of Phycology 39:988998.Google Scholar
Hedges, S. B., and Kumar, S., eds. 2009a. The timetree of life. Oxford University Press, Oxford.Google Scholar
Hedges, S. B., and Kumar, S., eds. 2009b. Discovering the timetree of life. Pp. 318 in Hedges, and Kumar, 2009a.Google Scholar
Hedges, S. B., and Kumar, S., Parker, P. H., Sibley, C. G., and Kumar, S. 1996. Continental breakup and the ordinal diversification of birds. Nature 381:226229.Google Scholar
Ho, S. Y. W., and Larson, G. 2006. Molecular clocks: when times are a-changin'. Trends in Genetics 22:7983.Google Scholar
Hug, L. A., and Roger, A. J. 2007. The impact of fossils and taxon sampling on ancient molecular dating analyses. Molecular Biology and Evolution 24:18891897.Google Scholar
Hughey, J., Braga, J. C., Aguirre, J., Woelkerling, W. J., Webster, J., and Stamatoyannopoulos, G. 2008. Analysis of ancient DNA from fossil corallines (Corallinales, Rhodophyta). Journal of Phycology 44:374383.Google Scholar
Iryu, Y., Bassi, D., and Woelkerling, W. J. 2009. Re-assessment of the type collections of fourteen corallinalean species (Corallinales, Rhodophyta) described by W. Ishijima (1942–1960). Palaeontology 52:401427.Google Scholar
Ishijima, W. 1936. On the classification and phylogenetic relation of genera of the Melobesiae. Transactions of the Palaeontological Society of Japan 43:938941.Google Scholar
Ishijima, W. 1978. Calcareous algae from the Philippines, Malaysia and Indonesia. Pp. 167190 in Kobayashi, T., Toriyama, R., and Hashimoto, W., eds. Geology and palaeontology of Southeast Asia, Vol. 19. University of Tokyo Press, Tokyo.Google Scholar
Johnson, J. H. 1956. Ancestry of coralline algae. Journal of Paleontology 30:563567.Google Scholar
Johnson, J. H. 1961. Limestone-building algae and algal limestones. Colorado School of Mines, Golden.Google Scholar
Keij, A. J. 1963. Distichoplax in Sarawak and North Borneo. Bulletin of the British Borneo Geological Survey 4:153160.Google Scholar
Keij, A. J. 1964. Distichoplax from Kudat Peninsula and Bangui Island, Sabah, Borneo. Revue de Micropaléontologie 7:115118.Google Scholar
Kim, J. H., Guiry, M. D., Oak, J. H., Choi, D. S., Kang, S. H., Cheng, H., and Choi, H. G. 2007. Phylogenetic relationships within the tribe Janieae (Corallinales, Rhodophyta) based on molecular and morphological data: a reappraisal of Jania . Journal of Phycology 43:13101319.Google Scholar
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.Google Scholar
Le Gall, L., and Saunders, G. W. 2007. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Molecular Phylogenetics and Evolution 43:11181130.Google Scholar
Le Gall, L., Payri, C. E., Bittner, L., and Saunders, G. W. 2010. Multigene phylogenetic analyses support recognition of the Sporolithales ord. nov. Molecular Phylogenetics and Evolution 54:302305.Google Scholar
Lemoine, M. P. 1923. Contribution a l'étude des Corallinacées fossils. VI. Les Mélobésiées du Calcaire Pisolitique du Bassin de Paris. Bulletin de Société Géologique de France 23:6269.Google Scholar
Lemoine, M. P. 1928. Un nouveau genre de Mélobésiées: Mesophyllum . Bulletin de la Société Botanique de France 75:251254.Google Scholar
Maggs, C. A., Verbruggen, H., and de Clerk, O. 2007. Molecular systematics of red algae: building future structures on firm foundations. In Brodie, J. and Lewis, J., eds. Unravelling the algae: the past, present, and future of algal systematics (Systematics Association Special Volume) 75:103121. CRC Press, Boca Raton, Fla. Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.Google Scholar
Marshall, C. R. 1998. Determining stratigraphic ranges. Pp. 2353 in Donovan, S. K. and Paul, C. R. C., eds. The adequacy of the fossil record. Wiley, New York.Google Scholar
Maslov, V. P. 1956. Iskopaemye izvestkovye vodorosli SSSR. [Fossil calcareous algae of the U.S.S.R.] Trudy Instituta geologicheskikh nauk AN SSSR, Moscow 160:1302.Google Scholar
Moussavian, E. 1989. Taxonomische untersuchungen and “Amphiroa” propria LEMOINE (Corallinaceae/Rhodophyta; Maastrich-Thanet). Münchner Geowissenschaften Abhandlungen 15:4154.Google Scholar
Moussavian, E., Salas, R., and Martin-Closas, C. 1993. Evidence of modern red algae (Corallinaceae, Peyssonneliaceae) in the pre-Barremian Cretaceous. Second regional symposium of the International Fossil Algae Association, “Alpine Algae,” Munich, 1993, Abstracts, p. 42.Google Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review in Ecology and Systematics 12:195223.Google Scholar
Paul, C. R. C. 1998. Adequacy, completeness and the fossil record. Pp. 122 in Donovan, S. K. and Paul, C R. C., eds. The adequacy of the fossil record. Wiley, New York.Google Scholar
Peterson, K. J., and Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences USA 102:95479552.Google Scholar
Peterson, K. J., McPeek, M. A., and Evans, D. A. D. 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency Paleobiology 31(Suppl. to No. 2):3655.Google Scholar
Poignant, A. F. 1974. A propos de la phylogénie des algues fossiles. Comptes Rendus de l'Académie des Sciences de Paris 278:17111714.Google Scholar
Poignant, A. F. 1979. Les corallinacées Mésozoïques et Cénozoïques: hypothèses philogénétiques. Bulletin de Centre des Recherches Exploration-Production, Elf-Aquitaine 3:753755.Google Scholar
Posada, D. 2006. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research 34:700703.Google Scholar
Posada, D., and Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817818.Google Scholar
Raineri, R. 1920. Alghe fossili corallinacee della Libia. Rendiconti della Real Accademia Nazionale dei Lincei 29:137148.Google Scholar
Rambaut, A., and Drummond, A. J. 2007. Tracer, Version 1.4. Available online at http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Rasser, M., and Piller, W. E. 1999. Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. Journal of Micropaleontology 18:6780.Google Scholar
Rodríguez-Trelles, F., Tarrío, R., and Ayala, F. J. 2001. Erratic overdispersion of three molecular clocks: GPDH, SOD, and XDH. Proceedings of the National Academy of Sciences USA 98:1140511410.Google Scholar
Rodríguez-Trelles, F., Tarrío, R., and Ayala, F. J. 2002. A methodological bias toward overestimation of molecular evolutionary time scales. Proceedings of the National Academy of Sciences USA 99:81128115.Google Scholar
Rodríguez-Trelles, F., Tarrío, R., and Ayala, F. J. 2004. Molecular clocks: whence and whither? Pp. 526 in Donoghue, P. C. J. and Smith, M. P., eds. Telling the evolutionary time: molecular clocks and the fossil record (Systematic Association Special Volume). CRC Press, London.Google Scholar
Ronquist, R., and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:15721574.Google Scholar
Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19:101109.Google Scholar
Sanderson, M. J. 2004. r8s, Version 1.70. Analysis of rates (r8s) of evolution. Section of Evolution and Ecology, University of California, Davis.Google Scholar
Silva, P. C., and Johansen, H. W. 1986. A reappraisal of the order Corallinales (Rhodophyta). British Phycological Journal 21:245254.Google Scholar
Steneck, R. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.Google Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals in Bayesian probability estimates for ends and local taxon ranges. Mathematical Geology 21:411427.Google Scholar
Swofford, D. L. 2002. PAUP. Phylogenetic analysis using parsimony ( and other methods), Version 4. Sinauer, Sunderland, Mass. Google Scholar
Talavera, G., and Castresana, J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56:564577.Google Scholar
Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24:15961599.CrossRefGoogle ScholarPubMed
Tarrío, R., Rodríguez-Trelles, F., and Ayala, F. J. 2001. Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Molecular Biology and Evolution 18:14641473.CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment allied by quality analysis tools. Nucleic Acids Research 25:48764882.Google Scholar
Tomás, S., Aguirre, J., Braga, J. C., and Martin-Closas, C. 2007. Late Hauterivian coralline algae (Rhodophyta, Corallinales) from the Iberian Chain (E Spain). Taxonomy and the evolution of multisporangial reproductive structures. Facies 53:7995.Google Scholar
Townsend, R. A., Woelkerling, W. J., Harvey, A. S., and Borowitza, M. 1995. An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia. Australian Systematic Botany 8:85121.Google Scholar
van den Hoek, C., Mann, D. G., and Jahns, H. M. 1995. Algae. An introduction to phycology. Cambridge University Press, Cambridge.Google Scholar
Vannucci, G., Piazza, M., Fravega, P., and Basso, D. 2000. Revision and re-documentation of M. Airoldi's species of Archaeo-lithothamnium from the Tertiary Piedmont Basin (NW Italy). Rivista Italiana di Paleontologia e Stratigrafia 106:191202.Google Scholar
Verheij, E. 1993. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spormonde Archipielago, Indonesia. Phycologia 32:184196.Google Scholar
Vidal, R., Meneses, I., and Smith, M. 2003. Molecular genetic identification of crustose representatives of the order Corallinales (Rhodophyta) in Chile. Molecular Phylogenetics and Evolution 28:404419.Google Scholar
Welch, J. J., and Bromham, L. 2005. Molecular dating when rates vary. Trends in Ecology and Evolution 20:320327.CrossRefGoogle ScholarPubMed
Whelan, S., Liò, P., and Goldman, N. 2001. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends in Genetics 17:262272.Google Scholar
Woelkerling, W. J. 1987. The genus Choreonema in southern Australia and its subfamilial classification within Corallinaceae (Rhodophyta). Phycologia 26:111127.CrossRefGoogle Scholar
Wray, J. L. 1977. Calcareous algae. Elsevier, Amsterdam.Google Scholar