Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T10:19:50.382Z Has data issue: false hasContentIssue false

Konservat-Lagerstätten: cause and classification

Published online by Cambridge University Press:  08 February 2016

Peter A. Allison*
Affiliation:
Dept. of Geology, University of Bristol, Queens Road, Bristol BS6 5DS, United Kingdom

Abstract

A review of the processes required for exceptional preservation of soft-bodied fossils demonstrates that anoxia does not significantly inhibit decay and emphasizes the importance of early diagenetic mineralization. Early diagenesis is the principal factor amongst the complex processes leading to soft-part preservation. The development of a particular preservational mineral is controlled by rate of burial, amount of organic detritus, and salinity. A new causative classification of soft-bodied fossil biotas is presented based upon fossil mineralogy and mineral paragenesis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., and Smith, M. P. 1986. The affinities of conodonts—new evidence from the Carboniferous of Edinburgh, Scotland. Lethaia 19:279291.CrossRefGoogle Scholar
Aller, R. C. 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry. Advances in Geophysics 22:237350.Google Scholar
Aller, R. C. and Yingst, J. Y. 1980. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Marine Biology 56:2942.CrossRefGoogle Scholar
Aller, R. C. and Mackin, J. E. 1984. Preservation of reactive organic matter in marine sediments. Earth and Planetary Science Letters 70:260266.CrossRefGoogle Scholar
Allison, P. A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology 14:979981.2.0.CO;2>CrossRefGoogle Scholar
Allison, P. A. 1987. The Taphonomy of Soft-Bodied Fossil Biotas. Unpublished Ph.D. Dissertation, University of Bristol. Bristol, England. 198 pp.Google Scholar
Allison, P. A. 1988a. The decay and mineralization of protein-aceous macrofossils. Paleobiology 14:139154.CrossRefGoogle Scholar
Allison, P. A. 1988b. Taphonomy and diagenesis of the London Clay (Eocene) biota. Palaeontology 31(4):10791100.Google Scholar
Allison, P. A. 1988c. Soft-bodied squids from the Jurassic Oxford Clay. Lethaia. 21(4):403410.CrossRefGoogle Scholar
Baird, G. C. 1979. Lithology and fossil distribution, Francis Creek Shale in Northeastern Illinois. Pp. 4168. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; London.CrossRefGoogle Scholar
Baird, G. C., Shabica, C. W., Anderson, J. L., and Richardson, E. S. Jr. 1985. The biota of a Pennsylvanian muddy coast: habitats within the Mazonian delta complex, northeastern Illinois. Journal of Paleontology 59:253281.Google Scholar
Baird, G. C. and Brett, C. E. 1986. Erosion on an anaerobic seafloor: significance of reworked pyrite deposits from the Devonian of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 57:157193.CrossRefGoogle Scholar
Bartram, K. M., Jeram, A. J., and Selden, P. A. 1987. Arthropod cuticles in coal. Journal of the Geological Society of London 144:513518.CrossRefGoogle Scholar
Bathurst, R. G. C. 1975. Carbonate Sediments and Their Diagenesis. Developments in Sedimentology 12. Elsevier; Amsterdam. 620 pp.Google Scholar
Benmore, R. A., Coleman, M. L., and McArthur, J. M. 1983. Origin of sedimentary francolite from its sulphur and carbon isotope composition. Nature 302:516518.CrossRefGoogle Scholar
Bergström, J. 1989. Taphonomy of fossil Lagerstätten: Hünsruck Slate (Hünsruckschiefer). Pp. XXX–YYY. In Briggs, D. E. G., and Crowther, P. R. (eds.), Encyclopaedia of Palaeobiology. Blackwell Scientific Press; Oxford. In press.Google Scholar
Berner, R. A. 1968. Calcium carbonate concretions formed by the decomposition of organic matter. Science 159:195197.CrossRefGoogle ScholarPubMed
Berner, R. A. 1970. Sedimentary pyrite formation. American Journal of Science 268:123.CrossRefGoogle Scholar
Berner, R. A. 1971. Principles of Chemical Sedimentology. McGraw-Hill; New York. 240 pp.Google Scholar
Berner, R. A. 1980. Early Diagenesis: a theoretical approach. Princeton University Press; Princeton. 241 pp.Google Scholar
Berner, R. A. 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschritte der Mineralogie 59:117135.Google Scholar
Berner, R. A. 1984. Sedimentary pyrite, an update. Geochimica et Cosmochimica Acta 48:605615.CrossRefGoogle Scholar
Berner, R. A. 1985. Sulphate reduction, organic matter decomposition and pyrite formation. Philosophical Transactions of the Royal Society of London 315A:2537.Google Scholar
Berner, R. A. and Raiswell, R. 1984. A new method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365368.2.0.CO;2>CrossRefGoogle Scholar
Brett, C. E. and Baird, G. C. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaois 1:207227.CrossRefGoogle Scholar
Briggs, D. E. G. and Rolfe, W. D. I. 1983. New Concavocarida (new order ?Crustacea) from the Upper Devonian of Gogo, Western Australia, and the palaeoecology and affinities of the group. Special Papers in Palaeontology 30:249276.Google Scholar
Briggs, D. E. G., Clarkson, E. N. K., and Aldridge, R. J. 1983. The conodont animal. Lethaia 16:114.CrossRefGoogle Scholar
Cisne, J. L. 1973. Anatomy of Triarthrus and the relationship of the Trilobita. Fossils and Strata 4:4564.CrossRefGoogle Scholar
Clark, G. R. and Lutz, R. A. 1980. Pyritization in the shells of living bivalves. Geology 8:268271.2.0.CO;2>CrossRefGoogle Scholar
Coleman, M. L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London 315A:3954.Google Scholar
Conway Morris, S. 1979a. Burgess Shale. Pp. 153160. In Fairbridge, R. W., and Jablonski, D. (eds.), The Encyclopaedia of Paleontology. Dowden, Hutchinson and Ross; Stroudsberg, Pennsylvania.CrossRefGoogle Scholar
Conway Morris, S. 1979b. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London 285B:227274.Google Scholar
Conway Morris, S. 1985. Cambrian Lagerstätten: their distribution and significance. Philosophical Transactions of the Royal Society of London 311B:4967.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29:423458.Google Scholar
Donovan, D. T. 1983. Mastigophora Owen 1856, a little known genus of Jurassic coleoids. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 165:484495.Google Scholar
Donovan, D. T. and Crane, M. In prep. Type material of Belemnotheutis in the Pearce Collection at the Bristol Museum and Art Gallery.Google Scholar
Ennever, J., Streckfuss, J. L., and Goldschmidt, M. C. 1981. Calcifiability comparison among selected micro-organisms. Journal of Dental Research 60:17931796.CrossRefGoogle Scholar
Ferris, F. G., Fyfe, W. S., and Beverbridge, T. J. 1988. Metallic ion binding by Bacillus subtilus: implications for the fossilization of micro-organisms. Geology 16:149152.2.3.CO;2>CrossRefGoogle Scholar
Fisher, I. St. J. and Hudson, J. D. 1985. Pyrite geochemistry and fossil preservation in shales. Philosophical Transactions of the Royal Society of London 311B:167169.Google Scholar
Franzen, J. L. 1985. Exceptional preservation of Eocene vertebrates in the lake deposit of Grübe Messel (West Germany). Philosophical Transactions of the Royal Society of London 311B:181186.Google Scholar
Glob, P. V. 1969. The Bog People. Faber; London. 200 pp.Google Scholar
Grande, L. 1984. Paleontology of the Green River Formation, with a review of the fish fauna. Bulletin of the Geological Survey of Wyoming 63:1333.Google Scholar
Gulbrandsen, R. A. 1969. Physical and chemical factors in the formation of marine apatite. Economic Geology 64:365382.CrossRefGoogle Scholar
Hemleben, C. 1977. Rote Tiden und die Oberkretazischen Plattenkalke im Libanon. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1977:135–113.Google Scholar
Huckel, U. 1970. Die Fischenschiefer von Haqel and Hjoula in der Oberkriede des Libanon. Neues Jarhbuch für Geologie und Paläontologie, Abhandlungen 135:113149.Google Scholar
Hudson, J. D. 1982. Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. Sedimentology 27:639667.CrossRefGoogle Scholar
J⊘rgenson, B. B. 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philosophical Transactions of the Royal Society of London B298:543561.Google Scholar
J⊘rgenson, B. B. 1983. Processes at the sediment-water interface. Pp. 477561. In Bolin, B., and Cook, R. B. (eds.), The Major Biochemical Cycles and Their Interactions. J. Wiley and Sons; Chichester.Google Scholar
Kenrick, P. and Edwards, D. 1988. The anatomy of Lower Devonian Gosslingia breconensis Heard based on pyritized axes, with some comments on the permineralization process. Botanical Journal of the Linnean Society 97:95123.CrossRefGoogle Scholar
Knauth, L. P. 1979. A model for the origin of chert in limestone. Geology 7:274277.2.0.CO;2>CrossRefGoogle Scholar
Kott, R. and Wüttke, M. 1987. Untersuchungen zur Morphologie, Paläökologie und Taphonomie von Retifungus rudens Reitschel 1970 aus dem Hunsrückschiefer (Bundersrepublik Deutschland). Geologisches Jahrbuch Hessen 115:127.Google Scholar
Lein, A. Y. 1978. Formation of carbonate and sulfide minerals during diagenesis of reduced sediment. Pp. 339354. In Krumbein, W. E. (ed.), Environmental Biogeochemistry and Geomicrobiology. Ann Arbor Science. Ann Arbor, Michigan.Google Scholar
Leo, R. F. and Barghoorn, E. S. 1976. Phenolic aldehydes: generation from fossil woods and carbonaceous sediments by oxidative degradation. Science 168:582584.CrossRefGoogle Scholar
Leo, R. F. and Barghoorn, E. S. 1976. Silicification of wood. Botanical Museum Leaflets of Harvard University 25:146.CrossRefGoogle Scholar
Love, L. G. 1967. Early diagenetic iron sulphide in recent sediments of the Wash (England). Sedimentology 9:327352.CrossRefGoogle Scholar
Lucas, J. and Prévot, L. 1984. Apatite synthesis by bacterial activity from phosphatic organic matter and several calcium carbonates in natural freshwater and seawater. Chemical Geology 42:101118.CrossRefGoogle Scholar
Malcolm, S. J. and Stanley, S. O. 1982. The sediment environment. Pp. 114. In Nedwell, D. B., and Brown, C. M. (eds.), Sediment Microbiology. Academic Press; London.Google Scholar
Martill, D. M. 1986. The stratigraphic distribution and preservation of fossil vertebrates in the Oxford Clay of England. Mercian Geologist 10:161188.Google Scholar
Martill, D. M. 1987. A taphonomic and diagenetic case study of a partially articulated ichthyosaur. Palaeontology 30:543556.Google Scholar
Martill, D. M. 1988. The preservation of fishes in concretions from the Santanna Formation (Cretaceous) of Brazil. Palaeontology 31:118.Google Scholar
Müller, K. J. 1985. Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society of London 311B:6773.Google Scholar
Müller, K. J. and Walossek, D. 1985. Skaracarida, a new order of Crustacea from the Upper Cambrian of Västergötland, Sweden. Fossils and Strata 17:165.CrossRefGoogle Scholar
Peck, H. D. and Legall, J. 1982. Biochemistry of dissimilatory sulphate reduction. Philosophical Transactions of the Royal Society of London 298B:443466.Google Scholar
Pinna, G. 1985. Exceptional preservation in the Jurassic of Osteno. Philosophical Transactions of the Royal Society of London 311B:170180.Google Scholar
Raiswell, R. 1971. The growth of Cambrian and Liassic concretions. Sedimentology 17:147171.CrossRefGoogle Scholar
Raiswell, R. 1976. The microbiological formation of carbonate concretions in the Upper Lias of N. E. England. Chemical Geology 18:227244.CrossRefGoogle Scholar
Redfield, A. C. 1958. The biological control of chemical factors in the environment. American Scientist 48:206226.Google Scholar
Richardson, E. S. Jr. and Johnson, R. G. 1971. Mazon Creek faunas. Proceedings of the First North American Paleontological Convention 1:12221235.Google Scholar
Scott, A. C. 1979. The ecology of Coal Measure floras from northern Britain. Proceedings of the Geologists Association 90:97116.CrossRefGoogle Scholar
Seilacher, A. 1970. Begriff and bedeutung der Fossil-Lagerstätten. Neues Jarhbuch für Geologie und Paläontologie Abhandlungen 1970:3439.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of Fossil-Lagerstätten. Philosophical Transactions of the Royal Society of London 311B:523.Google Scholar
Sellwood, B. W. 1971. The genesis of some sideritic beds in the Yorkshire Lias (England). Journal of Sedimentary Petrology 38:854858.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Shabica, C. W. 1979. Pennsylvanian sedimentation in Northern Illinois: examinatin of delta models. Pp. 1341. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press; New York.CrossRefGoogle Scholar
Stout, J. D., Goh, K. M., and Rafter, T. A. 1981. Chemistry and turnover of naturally occurring resistant organic compounds in soil. Soil Biochemistry 5:173.Google Scholar
Stürmer, W. 1985. A small coleoid cephalopod with soft-parts from the Lower Devonian discovered using radiography. Nature 318:5354.CrossRefGoogle Scholar
Stürmer, W. and Bergström, J. 1973. New discoveries on trilobites by x-rays. Paläontologische Zeitschrift 47:104141.CrossRefGoogle Scholar
Voight, E. 1935. Die Erhaltung von Epithelzellen mit Zellkernen, von Chromatophoren und Corium in fossiler froschhaut aus der mitteleozänen Braunkohle das Geiseltales. Nova Acta Leopoldina 3:339360.Google Scholar
Voight, E. 1957. Eine parasitischer Nematode in fossiler Coleopteren Muskulatur aus das eozänen Braunkohle des Geiseltales bei Halle (Saare). Paläontologische Zeitschrift 31:3539.CrossRefGoogle Scholar
Wade, M. 1968. Preservation of soft-bodied animals in Pre-Cambrian sandstones at Ediacara, South Australia. Lethaia 1:238267.CrossRefGoogle Scholar
Westrich, J. T. and Berner, R. A. 1984. The role of bacterial sulfate reduction: the G model tested. Limnology and Oceanography 29:236249.CrossRefGoogle Scholar
Whittington, H. B. 1971. The Burgess Shale: history of research and preservation of fossils. Proceedings of the First North American Paleontological Convention 1:11761201.Google Scholar
Wüttke, M. 1983. Weichteil-Erhaltung durch lithifizierte Microorganismen bei mittel-eozänen Vertebraten aus den Ölschiefern der Grube Messel bei Darmstadt. Senckenbergiana Lethaea 64:509527.Google Scholar
Zangerl, R. 1971. On the geologic significance of perfectly preserved fossils. Proceedings of the First North American Paleontological Convention 1:12071222.Google Scholar
Zangerl, R. and Richardson, E. S. Jr. 1963. The paleoecological history of two Pennsylvanian black shales. Fieldianna Geology Memoir 4:1132.Google Scholar